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Chapter I

GENERALCONSIDERATlOk_

i. i Introduct ion

In both external and internal aerodynamics, most of the problems

involve boundary layer flows over curved surfaces. Some of these flows

are fully developed, while others are not. In the past, investigators

have been content to treat these boundary layer flows by assuming

that the curvature of the mean flow streamlines in planes normal to

the surface, and the associated static pressure variation across the

boundary layers do not influence the flow significantly, if the radius

of curvature of the surface is much larger than the boundary layer

thickness. With such simplification, the many problems in viscous

aerodynamics can be solved by making use of the vast amount of data

collected in the study of fully developed pipe/channel flows and two-

dimensional boundary layers. This assumption is known to be correct

approximately in laminar flow_ since the effects of the additional

curvature of the mean flow streamlines are known to be of second order

smallness (see van Dyke 1962). These small effects arise from the

kinematics of curved flow, and the curvature of mean flow streamlines

has little influence on the magnitude and distribution of the viscous

stresses.

On the other hand, turbulent flows are very sensitive to the

curvature of the mean flow streamlines. The additional curvature

influences the flow in a manner which is not known at present, but

is believed to be significant enough to change the detail flow mechanism

completely. This is evident from an examination in some detail of the

observed phenomena in a turbulent boundary layer on a flat surface.

Very close to the wall, there appears to be a region where the

fluid motion is still predominantly viscous, and the velocity rises

steeply. Further away_ the flow becomes unstable, and finally, a



region is reachedwhere the eztire flow is involved in turbulent motion.

Recent detailed experimental studies by Schrauband Kline (1965)

have revealed that the viscous region is not truly undisturbed.

Rather, relatively large elements of low velocity fluids adjacent to

the surface of the viscous sublayer periodically lift off the surface

and movetowards the fully turbulent region. There they Join a pattern

of decaying turbulence. Themechanismresponsible for this phenonfenon

is not fully understood. However, it can be attributed to the insta-

bility of the flow near the outer edge of the viscous sublayer, and also

due to the action of the outer flow which operates mainly by IFessure

fluctuations transmitted to the sublayer. Since continuity dictates

that fluid must replace the elements which lift off the surface, elements

of highly energetic fluid will have to movein from further out. In

turn, these highly energetic fluid maysupply the energy to eject the

elements from the surface. At any rate, turbulence in the fully

turbulent region is generated and maintained by the elements originating
at the surface.

With this picture in mind, one can see why turbulent flows are

very sensitive to curvature of the meanflow streamlines. For flows

over convex surfaces, the centrifugal force on a fluid particle must

be balanced by an inward pressure gradient. If a particle is moving too

slowly, its centrifugal force is too small, and it movesinwards.

As a result, the fluid element%which lift off from the surface carrying

with them the velocities at the points where they comefrom,will have

a smaller centrifugal force at their newlocations. Therefore, they

will be pushed inwards by the pressure gradient and the interchange of

momentumand energy betweenthe faster and the more slowly moving

fluids are hindered. As a result, the boundary layer is thinner at

the wall. Observations of flows between rotating cylinders by Taylor

(1936) confirmed this and showeda very large reduction in turbulent

shear stress. In contrast with this, the destablizing effect of



centrifugal forces on concavewalls leads to the formation of Taylor-

Gortler type vortices which promote transition to turbulence. Therefore,

it is quite possible that turbulent boundary layers on curved surfaces

maydiffer appreciably from that on a flat plate with the samedistri-

bution of external pressure.

Before proceeding any further, it is felt that a discussion of

previous work is most essential in that it not only points the way

for further work in curved turbulent flows, but that it also indicates

the logical line of attack for the present investigation. For purpose

of clarity, the discussion is divided into two sections. The first

section deals mainly with fully developed flows, while the secondtouches_

on turbulent boundary layers along curved surfaces. In anticipation of

the fact that the flow phenomenonin turbulent boundary layers along

concave surfaces are different from that along convex surfaces, distinc-

tion will be madebetweenthese two types of flow in the discussion

below.

1.2 A Brief Discussion of Previous Work

1.2.1 Fully Developed Curved Turbulent Flows

Since the flow near a surface is determined to a large extent by

local conditions and to a lesser extent by the action of the outer flow

which operates mainly through pressure fluctuation transmitted to the

region near the surface, one can expect the flow in the vicinity of the

wall to be the same, be it a boundary layer flow or a fully developed

flow. This is true for straight flows and data obtained from pipe

flow measurements lead to the establishment of the Law of the Wall.

With only the additional effects of the curvature of the mean flow

streamlines which are known to be of second order smallness only if the

flow is viscosity dominant, one would expect the curvature to have very

little effect on the flow close to the wall*. As a result, one can expect

*This fact is at least partially supported by the vast amount of flat plate

pressure gradient data in which the mean flow streamlines are also curved

due to rapid boundary layer growth.



the Law of the Wall to hold also in a curved flow. However, the

measurementsof Wattendorf (1935) in two curved channels of constant

curvature and a ratio _ of half channel width to meanradius of

curvature of 1/19 and 1/9 do not lend evidence to such an argument.

Rather, Wattendorf found that the deviation from the Lawof the Wall was

in opposite directions for opposite signs of curvature, and that the
deviation increased with curvature.

Eskinazi and Yeh (1956) did similar measurementsin a curved

channel of constant curvature and with (_ = 1/19 They found that the

deviation from the Lawof the Wall does not start until about YU_/v_ 200.

Indeed, the deviation was in opposite directions for opposite signs of

curvature. This did seemto indicate the existence of the Lawof the Wall

region. Fromtheir data, Eskinazi and Yeh concluded that U/u_ is not
only a function of YU_/w, but also of y/r or somecombination of the

two.

For fully developed turbulent flow in a curved channel of constant

curvature_ the turbulent shearing stress would_ in the momentumtransfer

theory_ be given by

-- i (ur) 
- uv --ve {r

where v is the eddy viscosity. This requires the shearing stress toe

vanish at 5_r ur) = 0 . However, both Wattendorf and Eskinazi and Yeh

found that the point of zero uv did not coincide with the point of

zero _ur) Hence, Eskinazi and Yeh concluded that there was a

region between these two points in which the product u-v __ ur) was

2
positive. This meant that in this region, the turbulent energy in u

was being suppressed by Reynolds stress working on the mean momentum

gradient.

Besides mean flow measurements Eskinazi and yeh also made detailed

turbulence measurements and found that the turbulence intensities were

4



greater on the outer (concave) wall and smaller on the inner (convex)

wall comic%redto corresponding points in a straight channel. In an

inviscid, irrotational curved flow, the radial equilibrium of a fluid

element is stable if the radial gradient of angular momentumis negative.

Eskinazi and Yehwere the first to showthat these considerations also

apply to curved turbulent flows.

1.2.2 Turbulent Boundary Layers on Curved Surfaces

The effect of curvature on turbulent boundary layer was first

investigated by Wilcken (1930) on both the convex and concave surfaces.

It was then followed by Schmidbauer (1936) who studied the flow over

convex surfaces only. In both these experiments, _/R was at most .025 .

From his measurements, Wilcken concluded that the eddy viscosity was

much greater for the flow near the outer (concave) wall than that near

the inner (convex) wall, and that the mixing length at the outer wall

was found to be considerably larger than for a flat surface. Although

no turbulence measurements were made, these results seem to lend evidence

to the fact that with concave surface, the turbulence is strongly increased

while with convex walls, it is reduced. Wilcken explained this by arguing

that the centrifugal forces at the outer wall promote, while it diminishes

near the inner wall, the turbulent exchange between adjacent fluid layers.

Hence, the rapid thickening of the boundary layer on the outer wall is

due also to the increased turbulence activity. The opposite is true on

the convex wall. In connection with this, Schmidbauer's data also

showed a decrease in the boundary layer thickness. However, Wilcken's

results were somewhat obscured by disturbing side influences, which

were mainly caused by pressure conditions at the beginning and end of

the channel. In addition, the disturbing effect of the secondary flow

may also have influenced the boundary layer development on both the inner

and outer walls of the channel.

The work of Schneider and Wade (1967) did nothing to eliminate the



secondary flow influences. In fact, it is quite a bit morepronounced

because the aspect ratio of the test section varies from 1 at the

entrance to 2 at the exit. Also, the flow in the test section was one

of constant acceleration. As a result, it was little wonder why their

data do not correlate well with the Law of the Wall.

Through detailed measurements in a 180 ° bend, Patel (1968b)

demonstrated that the boundary layer on the convex wall was relatively

two-dimensional near the center line for the first 80° of the bend.

Thus, he managed to establish that the boundary layer development on

the convex wall near the center line of an 80° curved duct was relatively

free from the influence of secondary flow. In contrast to previous work,

the boundary layer investigated by Patel (1968a) has a maximum value of

5_ ~ O.1 . However, Patel did nothing to change the pressure distri-

buti_q on the convex wall of the curved duct, and in the opinion of the

present author, his data is subjected to the same shortcomings as that

of Wilcken in that it is hard to separate the curvature effects from

the pressure gradient effects.

The flow between two concentric cylinders with the inner one in

motion while the outer one remains at rest affords a good example of

the unstable stratification causes by the additional centrifugal forces

acting on the fluid particles. Since the velocity is higher near the

inner cylinder, the fluid particles experience a higher centrifugal

force, and as a result, the fluid particles will have a tendency to

move outward. Taylor (1938) was the first to observe that when a certain

Reynolds number is exceeded, longitudinal vortices with axes located

along the circumference begins to appear. A similar vortex system was

being observed by Gortler (1940) for flows along concave walls. The

analogy can also be drawn between the flow along a concavely curved

surface and that along a heated horizontal plate. Gortler (1959)

showed that the bouyant force in the thermally stratified layer also

gives rise to a system of longitudinal vortices. Noting that the



mechanismresponsible for the existence of the longitudinal vortex system

is the samefor these three different flows, one will naturally ask

whether such a systemwould also exist in a fully turbulent flow along

a concave surface, and if so, would the system of vortex be stationary.

In addition, one would like to find out the effect of such a vortex

system on the developmentof the boundary layer along the concavely

curved surface.

Tani (1962) was the first to demonstrate the existence of the

longitudinal vortices in the turbulent boundary layer along a concave

wall. According to Tani, the resultant waveamplitude of the vortices
decreasedas the radius of curvature of the surface was increased. More

recently, Patel (1968b) found that the longitudinal vortices also

appearedon the concavewall of his 18(f channel, and suggested that

before studying the influence of concavecurvature on a two-dimensional

turbulent boundary layer, one should examinethese vortices in detail

so as to determine the curvature parameter that would govern the appearance

and strength of these vortices.

1.3 Present Objectives

A great many mathematical models of physical phenomena are very

complicated and are highly nonlinear in nature. With the present

knowledge of nonlinear equations_ most of these models cannot be

solved in full. Usually_ simplifying assumptions are necessary to

reduce these equations to a more manageable form. In so doing, the

researcher is faced with the difficulty of deciding which effects or

variables are more important. Experimental studies are designed to

provide such information. Not only will the experimental results

reveal the most significant features of a physical phenomenon (provided

the experimental work is designed and carried out properly), they will

also provide empirical correlations for the theoretical researcher,

thusj enabling the researcher to make further simplifications of the



mathematical model and eventually obtain a solution to the particular

problem.

In connection with this, Coles (1962) has pointed out that the

most useful data are those in which one physical effect or parameter is

varied at a time. Well designed experiments should be able to separate

the various physical effects and isolate them for investigation, thus

allowing the researcher to comprehendthe significance of these various

effects easily. Fully developed turbulent flows in pipes and channels

and fiat plate turbulent boundary layer with the pressure gradient

carefully controlled, have led Clauser (1954, 1956) to the formulation

of the concept of the equilibrium boundary layer.

In keeping with the idea that one variable should be varied at

s time, the present experiments are so designed that curvature alone is

isolated for investigation. Dueto the presence of the pressure gradient

across the boundary layer in flows along curved walls, it is hard to

avoid the streamwise pressure gradient in the flow along a flat surface

joining smoothly to a curved surface. However, the pressure change in

the streamwise direction should be minimized, so that the flow can

recover from the pressure effect in a relatively short distance. Means

of doing this are incorporated in the boundary layer tunnel that is

specially designed for the present investigation. (This will be discussed

further in Chapter II.) Provisions are also made for the variation of

streamwise pressure distribution along the curved wall, so that both

constant pressure and pressure gradient data can be obtained. Because

of the need to be able to establish constant pressure on both convex

and concave surfaces, it is apparent that a single test section cannot

provide such versatility. Therefore, separate test sections, one with

convex curvature and one with concave curvature, are required. Again,

provisions are made in the tunnel so that the test section can be

changed without too much tzouble. No attempt has been made to obtain

data for several values of the curvatulv parameter, instead it has



been decided to study the flow phenomenonin moredetail in addition to

the usual velocity profile measurements.

Thus_the objective of the present investigation is to provide

both empirical knowledgeand physical understanding in the following

areas. Theseareas are: (a) constant pressure flow along convex surface,

(b) separating flow along convex surface, and (c) constant pressure flow

along concave surface. In case (a), the curvature parameter is kept

constant, but is varied along the flow in case (b). For both cases (a)

and (b), velocity profiles were obtained from pitot measurementsacross

the boundary layers while a rotating wire technique proposedby Fujita

and Kovasznay(1968) wasused to measurethe various componentsof the

Reynolds stress tensor.

In view of the fact that the flow along a concavesurface is

different from that along a convex surface, the system of longitudinal

vortices that exists wasmappedout first using fixed hot-wires. Then,

the rotating-wire technique was used to measurethe various components

of the Reynolds stress tensor at both the positions of the crest and

trough of the wave system.

Following a discussion of the various test equipmentand their

qualification in Chapter II, the results are examinedand critically

analyzed in Chapter III, and the Lawof the Wall is established for

flows along convex surfaces. In Chapter IV, a self-consistent set of

equations for curved turbulent boundary layer flows is derived_ together

with an eddy viscosity which is modified to include curvature effects.

The predictions by this model are then comparedwith the experimental

results. Chapter V stmm_rizesall the results and recommendationsfor

future work are also given.



Chapter II

EXPERIMENTALFROGRAM

2.1 Curved Wall Tunnel

2.1.I Description of Tunnel

The construction of the curved wall tunnel used in the present

investi_tion is described in detail in Appendix A. The diagrammatic

layout of the tunnel is shown in Figure 1 and a picture of the curved

wall tunnel is giwn in Figure 2. Briefly, the wind tunnel is of the

open-return suction type and is powered by a two speed 3 lO H.P. fan.

The Reynolds numbers per unit length corresponding to these two speeds

are 4.37 x lO 5 and 7.56 x lO 5 respectively. The wind tunnel is less

quiet and the vibration due to the fan is more severe at the higher

speed. As a result, all runs on both the convex and concave test walls

were conducted at the lower Reynolds numbers. Originally the entry to

the tunnel was made up of three layers of honey-comb flow straightener

separated by screens. However, it was found that the unit cannot provide

sufficient straightening effect to prevent unsteadiness in the flow.

Later_ through observation of tufts, the unsteadiness was shown to be

due to the unsteady ingestion of vortices which formed on the floor of

the room. To remedy the situation, two more layers of honey-comb

straightener separated by screen together with a bell-mouth were added

to the entrance of the tunnel. The traversing of tufts behind the

last screen then showed that the entire unit has sufficient straightening

effect to prevent unsteadiness in the flow, and that the flow is quite

parallel.

A contraction section that has a contraction ratio of 6 to 1 is

installed behind the flow straightener. The straight section that

follows is 4 feet long and has a cross-section of 6 inches by 48 inches.

The remainder of the tunnel consists of the curved test section which

has a fixed test wall of varying curvature and an adjustable opposite

i0



wall_ the exit diffuser and the fan and motor housing. The adjustable

wall allows the pressure distribution on the curved test wall to be

adjusted to give any arbitrary pressure distribution.

Two curved test sections _mre made; one has a convex test wall,

while the other ins a concave test wall. The whole tunnel was so constructed

that the test section could be connected to and disconnected from the straight

section and the exit diffuser with relative ease. In order to accommodate

the adjustable wall in the curved test section, the exit diffuser was

constructed in such a manner that one movable wall was all that was

required to fit the test section with either the convex or concave test

walls. End wall jets were installed at the entrance to the curved

test section to limit the secondary flow in the test section to small

regions near the end walls. In addition, it was found necessary to have

a side wall jet installed on the wall opposite the convex test wall.

However, with a concave test wall, the side wall jet was found unnecessary.

Further discussions of the significance of the side wall jet and the end

wall jets will be given in Sections 2.3.2 and 2.3. 3 respectively.

Wall static pressure taps made of .032 inches O.D. stainless

tubing were installed in the walls of the tunnel. For the straight

section where the wall is 9/16 inches thick, the tubings were cemented

into slots milled into the walls of the tunnel. The extruded tubings

were then sanded flush with the surface. For the curved test section

where the walls are only 1/32 inches thick, it was found necessary to

solder a square metal plate to the tubings. The tubings were then

installed into holes drilled into the wall, and then secured in place

by soldering the plate onto the wall. Again; the tubings were sanded

flush with the surface. Thus, the resultant pressure taps were of the

sharp edged, deep hole type.

2.1.2 Geometry of Curved Test Walls

In designing the curved wall, an original objective was to achieve

ii



an equilibrium constant pressure profile characterized, however, by a

constant value of the curvature parameter, 5"_ . Using simple flat

plate turbulent boundary layer theory, an estimate of 5*(x) is

obtained by assuming

.037x
 *Cx) -

Rexl/5 (2.i.2-i)

The empirical relation provides values of R(x) if the curvature

parameter is maintained constant. For the convex wall, the constant

is taken to be .O1, while for the concave wall, the constant is assumed

to be .007. The results are displayed in Figures 3 and 4 for the curved

walls respectively.

2.2 Measurement Techniques and Instrumentations

2.2.1 Wall Static Pressure

A row of wall static pressure taps is provided on the tunnel

center line in both the straight test wall and the curved test wall.

In addition, two rows of pressure taps, 14 inches above and below the

tunnel center line, are provided on the curved test walls. With the

convex test wall, the pressure taps are spaced as follows. The first

pressure tap in the tunnel center line is situated at x = 4 inches

(see Figure 5), then every lO inches until x = 44 inches, then every

inch until x = 58 inches, then every 2 inches until x = 78 inches where

the last pressure tap is situated. The off center line pressure taps

are situated at x = 51, 57, 62, 68, 72 and 76 inches respectively.

With the concave test wal_ the pressure taps in the tunnel center line

start at x = 6 inches (see Figure 6), then every i0 inches until x = 46

inches, then every 4 inches until x = 54 inches, then every inch until

x = 70 inches, then every 2 inches until x = llO inches where the last

pressure tap is situated. The off center line pressure taps start at

x = 46 inches and are spaced at 4 inches apart until x = llO inches.
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The pressure taps along the tunnel center line are used for the measure-

ment of the potential velocity at the surface while the off center line

pressure taps are used only for checking the pressure variation in the

transverse direction. They also serve to indicate the influence of the

secondary flow (see Section 2.3.3).

The wall static pressure taps are connected to the negative port

of a Pace Model CP510-.I PSID pressure transducer. The positive port

of the pressure transducer is connected to a reference pressure which

is provided by a pitot tube situated in the free stream near the tunnel

entrance. The transducer output is connected to a DISA Model 55 D30

Digital DC Voltmeter which can be read to .OO1 volts. The transducer

has a maximum output of 5 volts and this corresponds to a pressure of

3.51 inches of alcohol (sp. gr. = 0.791). Static calibration of the

pressure transducer is carried out against a micro-manometer for the

pressure range 0 - i inch of alcohol_ and against a manometer which

reads to within .02 inch of alcohol for the pressure range of i - 4

inches of alcohol. The calibration was checked from time to time and

it was found that the calibration curve was Quite repeatable.

2.2.2 Yaw Measurements

In the wall regions the centrifugal acceleration of the low velocity

end-wall boundary layer flows cannot balance the pressure gradient

impressed by the main stream. The resultant end-wall cross flows or

secondary flows influence the flow near the tunnel center line and it

may no longer be two-dimensional. Theoreticallyj if the aspect ratio

of the channel is large enough_ the secondary flow will be ccmfined to

a small region near the end wallsj and the flow in the core will be

essentially two-dimensional. The present tunnel has an aspect ratio of

8 in the straight section and varies to a minimum of 6.2 in the curved

test section with the convex test wall (see Figure 3). In order to find

out the extent of the secohdai_ flow_ yaw measurements inside the boundary
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layers were made at the tunnel center line and at planes above and

below the tunnel center line.

For the case of constant pressure flow along convex wall 3 yaw

measurements were made at Stations 33 4, 5, lO, ll and 12. For the

case of separating flow along convex wall , yaw measurements were made

at Stations 3, 4, 5, 8, 9 and lO. The various locations of these

stations are shown in Figure 5. For the case of constant pressure

flow along concave wall , yaw measurements were made on the convex wall

opposite the concave test wall. These measurements were made at x = 70

inches and x = 96 inches and at planes 16 inches above and below tunnel

center line. The locations of these stations are shown in Figure 6.

A Conrad probe (used as a null direction probe) is used to measure

flow directions inside the boundary layer. The particular probe geometry

(see Figure 7) is chosen because of its high sensitivity and its zero

scale effect (see Bryer, et.al. 1958). The probe has a stem of 1/8

inches 0.D. stainless steel tube and a goose-neck (Figure 8) of .063

inches O.D. stainless steel tube. With this shape_ the edge of the

probe is in line with the axis of the probe. Therefore, by aligning

the axis of the probe with the radial lines at the point of measurement,

the traverse across the boundary layer will be perpendicular to the

surface. The Conrad probe is inserted into the rotary device (Figure 9)

which in turn is secured onto the probe carrier. The probe carrier is

slid into a vertical stand and secured tightly in the level where the

probe is to be introduced into the test section. The bottom of the

stand is clamped to the floor of the tunnel and the top of the stand

is also clamped to one of the ribs on the tunnel wall (see Figure lO).

The probe is then introduced into the test section.

The introduction is through holes 7/16 inches diameter on the wall

opposite the test wall. A plexiglass plug is machined to fit into the

hole and flush with the wall. A hole just large enough to allow the

probe to pass through is dril]ed onto the plug. The plug-probe assembly
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is then taped onto the wall. Whenthis probe is securely in place, it

is traversed towards the test wall. An electrical circuit is arranged

so that whenthe probe is touching the curved wall, a light goes on.

Whenthe probe is brought back to such a position that the light just

goes off, the reading on the vernier mountedon the probe carrier is

noted. This gives the zero reading for y . This way of positioning

the probe has an accuracy in y of + .001 inches

The probe is rotated until the pressure is the samein the two

openings. The pressure difference between the two openings is measured

by a PaceModelCP51D-.I PSIDpressure transducer which is connected to

a DISA55D30Digital Voltmeter, and is indicated by a zero reading on

the voltmeter. However,due to pressure fluctuations, the voltmeter

can be at best read to + .01 volts. The angle through which the probe

has been rotated can be read from the dial on the rotary probe carrier

(Figure 9). Dependingon the meanflow velocity, this corresponds to

an accuracy of + 0.5_ in the determination of the flow direction. The

sensitivity of the Conradprobe wasdetermined for two different mean

flow velocities in the fully developed pipe flow systemand the result

is given in Figure 8. Also, the null angle of the Conradprobe was

determined in the pipe flow system. A more detailed explanation of the

positioning of the probe, the accuracy of the yawmeasurements,and the

determination of the null angle is given in Appendix B.

2.2.3 Velocity Profiles

In most boundary layer measurements, the mean velocity is measured

with a small pitot-static tube which is traversed in the direction per-

pendicular to the wall. The basis for these measurements is the incom-

pressible, frictionless Bernoulli equation

2
1

Pt - Ps - 2 pU

The mean velocity thus measured depends on how accurate the pitot-static
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tube measuresthe static pressure. Thepresence of this probe causes

the streamlines to diverge as the leading edge of the probe is approached.

This changesthe curvature of the streamlines and as a result the local

static pressure. The effect of the leading edge is felt manyprobe

diameters downstreamas the streamlines return to parallelism with those

of the main flow. Onthe other hand, the disturbances created by the

stem propagate upstream and produce a local variation from true static

pressure. However, the two effects cause opposite changesin the stream

pressure, and therefore a position can be found in the probe to locate

the static pressure holes such that the effects of leading edge and stem

cancel each other and again the true static pressure is measured.

Pitot-static probes of such design are commonlyused in boundary layer

measurementson flat surfaces where the probe is essentially parallel

to the surface. For boundary layer flows along curved surfaces, the

probe will no longer be parallel to the surface. As a result, the mean

flow approaching the probe is at an angle of attack, and the probe

will no longer register the true static pressure. In view of this,

the conventional pitot-static probe was not used for velocity profile

measurements. Rather, a total headprobe wasused to measurethe local

stagnation pressure, and the velocity was calculated from the incompressible

frictionless Bernoulli equation together with the y momentumequation

(see Section 2.4.1).

The stem of the total head probe is madefrom 1/8 inches O.D.

stainless steel tube while the goose-neck is formed from .032 inches 0.D.

stainless steel tube flattened at the tip to an outside vertical dimension

of .008 inches with an opening vertically of .004 inches (Figure 8).

Rogers and Berry (1950) found that the response of such a flat nose

probe was quite independent of yawangle of 15 degreesand less. The

accuracy of the present probe was checkedagainst a standard pitot-static

probe in a fully developed turbulent pipe flow system. The_all static

pressure at the point of measurementwas used as the reference for the
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total-head probe. Assumingthe static pressure to be constant across

the pipe the probe gives the dynamicheaddirectly. The measurements

obtained using the pitot-static probe and the _resent probe were identical.

For the convex test section, velocity profile measurementswere

madeat a total of twelve stations situated on both the straight and

curved sections. Of the twelve stations, eight were situated along the

tunnel center line_ two were situated at a plane 14 inches above tunnel

center line and the other two were situated at a plane 14 inches below

tunnel center line. Thelocations of the center line stations together

with the locations of the off center line stations are shownin Figure 5-

For the case of constant pressure flow, the off center line stations

were located directly aboveand below Stations 4 and ll_ while for the

separating flow case, they were located directly above and below Stations

4 and 9. This wasbecausethe flow was near separation at Station ll for

the separating flow case.

The positions of the various stations were measuredfrom the entrance

to the straight section. Since the constant pressure flow experiment

was run first, the locations of the various stations on the test (inner)

_all were selected and radial lines were markedon both the top and

bottom walls of the tunnel at these locations. The adjustable (outer)

wall was then installed and the correct pressure distribution was set

up on the test wall (see Section 2.3.2). The intersection betweenthe

radial lines and the outer wall would then giw the locations of the

corresponding measuring stations on the outer wall. The total-head

probe is introduced into the tunnel from the outer wall and is secured

in place in muchthe samewayas that used to secure the Conradprobe.

The probe is carried by the probe carrier shownin Figure lO_ and is

positioned radially muchthe samewayas that used to position the

Conradprobe. The probe carrier is mountedin the samemanner(see

Figure lO). Again, the sameelectrical circuit is used to indicate

whether the probe is Just touching the wall. Since the surface of the
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straight section was m_de of white panelite, it does not provide

electrical connection. To remedy this, a thin coat of silver paint

was painted on the tunnel center line of both side walls of the straight

section.

The same outer wall was used for the separating flow experiment,

but it was adjusted to give the correct pressure distribution on the

test wall. Therefore, if the same holes were to be used to introduce

the probe, their corresponding positions on the test _all will be

different. The locations of these stations are also shown in Figure 5.

It is seen that the positions of Stations 1 through 7 sre not changed.

The correct positioning of the probe radially depends on aligning the

probe with the radial lines inscribed on both the top and bottom walls

of the tunnel. However, with the separating flow case, there was only

one set of radial lines inscribed on the lucite top. It was impossible

to inscribe a corresponding set of radial lines on the bottom wall

without taking the outer wall apart. This was not advisable once the

correct pressure distribution has been set up.

The outlet of the total-head probe is connected to the negative

port of a Pace Model CP51D-.1 psid pressure transducer. The positive

port of the transducer is connected to a reference pressure which is

provided by a pitot tube situated in the free stream near the tunnel

entrance. The transducer output is connected to a DISA Model 55D30

Digital DC Voltmeter which can be read to .OO1 volts. The calibration

of the transducer is described under Section 2.2.1.

At the time the velocity profile measurements were made on the

convex wall with constant pressure distribution, the hot-wlre equipment

was not available. When the hot-wlre equipment was ready, the velocity

profile at Station ll for the constant pressure flow case was made with

the hot-wlre equipment. The velocity profile calculated from the total-

head probe measurement was then compared to the hot-wire measurement and

the two profiles overlap each other (Figure 37). Because of its convenience 3
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the total-head probe wasalso used to measurethe velocity profiles

for the separating flow case. However, the total-head probe w_s not

used to measurethe velocity profiles in the case of the concavetest

wall. Rather, hot-wire wasused. The hot-wire technique is described

in Section 2.2.5.

Anticipating the fact that a system of longitudinal vortices

would exit along the concavewall_ the z positions of the locations

where measurementwas to be madecould not be selected without a know-

ledge of the vortex system. The x positions of the stations were

chosenat 24, 70 and 96 inches respectively. In order to determine the

z positions, a hot-wire technique (see Section 2.2.6) wasused to traverse

the flow at x = 24, 70 and 96 inches respectively in the z direction.

The z positions were then taken to be the tunnel center line or the

positions of the trough and crest of a wave. The reason for this

choice of z positions is discussed in Section 3.3 As a result of the

these traverses, the positions of the five locations chosenare shown

in Figure 6. Shownalso are the z distance of these stations as

measuredfrom the tunnel center line. The hot-wire probe is introduced

through the inner (adjustable) wall. The samemethodas before wasused

to secure the probe in place and the sametechnique as that used to

position the Conradprobe radially wasused to position the hot-wire

probe. As to the y measurement,a description of the methodused is

given in Section 2.2.5.

2.2.4 Hot-Wire Equipment and Calibration

The hot-wire equipment wacd in the present experiment is shown in

Figure ii. It consists of the following standard, commercially available

units: one TSi Model IOIOA Constant Temperature Anemometer, one DISA Model

55DI0 Linearizer, one DISA 55D35 True RMS Voltmeter, two DISA 55D30 Digital

Voltmeters_ one Texas Instrument X-Y Plotter_ one Pace Associates X-Y Plotter

and one Techtronic Twin Beam Oscilloscope. The sensors and the probes were
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obtained from Thermo System Inc. The sensors are tungsten wires and

their characteristic dimensions are .00015 inches in diameter and .05

inches in sensitive length. Both ends of the sensor are copper

plated. Throughout the whole experiment, factory mounted wires were

used. The characteristic dimensions of the probe (see Figure 12) are:

length of stem, 1.5 inches; diameter of stem, .059 inches; length of

prongs, .25 inches; distance between tips of the prongs, .06 inches.

The prongs are gold-plated.

A small portable calibration tunnel was built for hot-wire cali-

bration. The tunnel is of the open-return type and is powered by

a variable speed fan. A diagram of the calibration tunnel is shown in

Figure 13. The air enters through a smooth bell-mouth which is followed

by a layer of honey-comb straightener and a fine mesh screen. This is

followed by a settling chamber that is three diameters long. A con-

vergent nozzle accelerates the flow by a 4:1 ratio, and at the same time

provides an axisymmetric contraction to the flow. The straight calibrating

section is located behind the nozzle, and the station used for calibration

is situated one diameter downstream of the nozzle exit. The air velocity

in the tunnel can be varied continuously from zero to lO0 ft/sec. The

velocity at the calibrating station is monitored by a fixed pitot probe

located on the center line upstream of the nozzle entrance and a wall

static hole drilled diametrically opposite the calibrating station. The

turbulence level was measured to be .2% when the air velocity in the

tunnel was 90 ft/sec.

The relation between the output voltage of a constant temperature

anemometer and the mean flow velocity is given by the equation

1

2 m
e = A+BU (2.2.4-i)

where A , B and m arc constants to be determined by direct calibration.

In arriving at this equation, free convection is neglected. Therefore,
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in general A is not equal to the square of the zero flow voltage_

and this complicates the calibration. The procedure fin_lly adopted

was to determine the constants A and B for different values of

the exponent i/m by least-square fitting the data to equation (2.2.4-1).

The chosen value of m is the one that gives the minimum deviation which

is defined as

i

• 2 m 2 (2.2.4-2)o2 mjr _ = 7 (e - A(m) - B(m) U i ]
1

All calibration

points

2
The data obtained showed no clear minimum for _ This means

that the choice of m was not critical for the type of sensors used

and the range of velocities considered. A plot of e 2 versus U I/m

for different values of m is given in Figure 14. On the other hand_

it was found that A/e o where eo is the zero flaw voltage, corre-

lates very well with m (Figure 15)o As a result, i/m was chosen

to be .42 and A/e o was taken to be .89 according to the recommendation

of DISA.

A diagrammatic layout of the hot-wire equipment is shown in Figure

16. For the present purpose, the linearizer which is connected in series

with the constant tempez_ture anemometer is just considered to be an arJalog

computer having a well defined transfer function. A typical calibration

curve of the linearizer output is given in Figure 17.

2.2.5 Hot-Wire Techniques

Mean Velocity Measurements

Once the hot-wire has been calibrated_ it is a simple matter to use

it to measure the mean flow velocity. The mean value of the linearized

hot-wire signal follows the law

e : hQf(¢) (2.2,5-1)
L
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where Q is the _gnitude of the velocity vector, ¢ is the angle

between the normal to the sensor and the direction of the mean velocity,

and h is the calibration constant. If the cross-flow is negligible

compared to the mean flow U , (this is true for the two cases of

constant pressure flow along convex and concave walls) then Q = U

The function f is symmetric with respect to its argument and is also

normalized to i when its argument is zero, therefore by aligning the

hot-wire so that its normal coincides with the flow direction,

% = hU (2,2,5-2)

which gives the mean velocity directly.

The straight hot-wire probe (figure 12) with a straight wire was

introduced into the tunnel in the same manner as the Conrad and total-

head probes and was carried by a rotating mechanism - probe carrier com-

bination shown in Figure i0. Due to the fragility of the wire, a

different method was used to determine the y position of the wire.

First, a dummy probe (it can be a hot-wire probe with broken wire) is

used. As before, an electrical circuit is used to indicate contact

between the probe and the wall. The reading on the vernier is noted,

and the probe is retracted until it is completely outside of the tunnel.

Then the dummy probe is replaced by a hot-wire probe. Knowing the exact

measurements of the hot-wire probe, the dummy probe and an average value

of the backlash of the probe carrier, the y position of the wire can

be determined to an accuracy of + .008 inches. A detailed description

of this method is given in Appendix B.

Turbulence Measurements

The standard technique used in the measurements of turbulent

stresses is the employment of an X-probe or a V-probe. However, this

method requires accurate alignment of the probe, and this poses serious

problems in the present investigations. In addition, if the longitudinal
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vortex systemdoes exist along the concavetest wall, the flow will no

longer be two-dimensional and the application of the X-probe or V-probe

will be quite doubtful. For these reasons, a rotating-wire technique

that is a modification of a technique proposedby Fujita and Kovasznay(1968)

is selected. The methodis essentially the sameas the one used by

Bissonnette (1970), therefore the methodwill not be discussed in detail

here. Instead, the reader is referred to the thesis of Bissonnette.

The hot-wire probes used are the straight and the slanted probes

shownin Figure 12. With the straight probes two types of wire are used;

one is straight and the other is a 45° slanted hot-wire. With the slanted

probe, only the straight wire is used.

The turbulent stresses canbe determined by two sets of measurements,

one set is given by the straight probe with the straight wire, while

the other set is given either by the slanted probe with the straight

wire or the straight probe with the slanted wire. For reasons that

will be apparent later, the turbulent stresses in the case of constant

pressure flow along convexwall were measuredusing straight wires on

both the straight and slanted probes. For the other two cases_the

turbulent stresses were measuredusing straight and 45° slanted wires

on the straight probe only.

With the straight wire on either the straight probe or the slanted

probe, the wire rotates in the xoz plane. The coordinate systems

for both the straight wire and the slanted wire are shownin Figure 18.

Both the straight probe and the slanted probe were introduced into the

tunnel the samewayas before, and the roation was chosento span

approximately -45° < ¢ < 45° In order to minimize the backlash errors

the recording of the linearized signal wasalways performed in the same

direction of rotation. A samplere^ording of the meanvalue and the

mean square value of the linearized signal versus the angle 5 of

rotation (straight-wire on straight probe) by means of X-Y plotters are

shown in Figures 19 and 20 respectively. The recordings were performed
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in both directions of rotation to account for the hysteresis due to the

different time constants of the low pass filter and the Rg_meter. The

true signal was taken to be the average curve drawnbetweenthe two

traces. Recording the signal in this manner_s very time consuming

(roughly about 15 minutes per experimental point) and in order to

reduce this experimentation time, the two time constants were chosen

to be approximately the same. AssumingcomParablehysteresis in both

eases, recording in only one direction was required, and results obtained

were practically the sameas those obtained by recording two traces.

With the 45° slanted wire on the straight probe, the wire generates

a conical surface with axis parallel to the oy axis whenthe probe is

rotated (Figure 18). In order to avoid the disturbance due to the longer

prong, the probe is positioned in such a mannerthat the longer prong

is always behind or parallel to the shorter prong during rotation.

For the case of constant pressure flow along convex wall, turbu-

lence measurementswere madeat Stations i, 7, 9 and ii, while for the

ease of seParating flow along convex wall, turbulence measurementswere

madeat Stations i, 4, 9_ ii and 12. For the case of constant pressure

flow along concavewall , turbulence measurementswere madeat all
five stations.

2.2.6 Mapping of the Longitudinal Vortex System

In order to make meaningful measurements on the concave wall, the

question of the existence of the longitudinal vortex system has to be

resolved. From the data of Tani (1962) it can be seen that the vortex

system is very likely to be stationary, otherwise Tani could not have

detected it with a p_tot traverse. For the present investigation, a

hot-wire set at a constant distance away from the concave wall is used

to traverse the flow in the z direction. The mechanism used to carry

the hot-wire probe and drive it in the z direction is shown in Figure 21.

Briefly, the probe adaptor used in conjunction with the TSI miniature
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hot-wire probe is firmly secured to a movable block which slides within

two groves on the strut of the probe carrier (Figure 22). The leads

of the adaptor are connected to a co-axial wire which has a BNC connector

on its other end. The straight hot-wire probe can then be plugged into

the probe adaptor. A constant speed motor is used to drive the movable

block along the strut. The speed of the motor can be varied by regulating

the supplied voltage. The linear movement of the probe is translated

into an electrical signal through a ten turn pot, so that its movement

can be recorded on a X-Y plotter. The probe carrier is so constructed

that the traverse in the z direction has a Sl_n of 21 inches, and

is centrally located with respect to the tunnel center line. At both

ends of the traverse, there is a limit-switch. When the movable block

is located at either end, it triggered the switch and the motor is turned

off. The pot, the motor and the gear assembly are located on top of th_

strut, and a piece of ¼ inches thick foam rubber is cemented on the

bottom of the strut. The length of the strut including the piece of

rubber is a bit longer than 4 feet.

With the straight hot-wire probe in position, the strut was intro-

duced into the tunnel from the top. It _as then fastened onto the

lucite top by screws as shown in Figure 23 . The three rectangular

holes on the top wall of the tunnel at x = 24, 70 and 96 inches respec-

tively were located in such manner that when there were no spacers in

front of the probe carrier assembly, the hot-wire was exactly .2

inches away from the vall. By moving the spacers to the front, the

hot-wire can be set at y = .4, .6, .8 and 1 inches away from the wall.

The straight hot-wire was positioned to give the m_ximum voltage

output. The linearized signal was connected to one arm of the X-Y

plotter. The X axis of the X-Y plotter was calibrated to indicate

the z position of the probe. The origin of z is taken to be the

tunnel center line, and z is positive when measn/red upward and negative

downvards. The traverse was always in the same direction, i.e. from top
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to bottom 3 and the speed of the motor was regulated to give a linear

speed of approximately 6 in/min.

Since the purpose of this investigation was to detect and map

out the longitudinal vortex system, no quantitative measurements of

the vortices were made. Once the vortex system was mapped out, the

locations of the stations where boundary layer measurements were to be

made could be determined.

2.3 Qualification of Curved Wall Tunnel

2.3.1 Two-Dimensional Equilibrium Turbulent Flow in Straight Section

Uniformity and steadiness of the flow in the straight section of

the tunnel was checked by observing tufts attached to the walls of the

tunnel. The equilibrium nature and two-dimensionality of the flow were

checked by actual measurements and comparison with Klebanoff's (1955)

data under similar circumstances.

First, the boundary layer was checked to see if it was turbulent.

To do this, velocity profile measurements were made at Station I and

x = 40 inches. Results indicated that the flow was still laminar up to

Station i and the boundary layer thickness at x = 40 inches was much

less than i inch. The flow was then tripped a small distance downstream

of the entrance to the straight section. The tripping was effected by

a slightly stretched piano wire covered by electrical tape. The

diameter of the wire was chosen to give a boundary layer thickness at

x = 40 inches of approximately I inch. For the sake of symmetry, the

flows on the other three walls were also tripped. With this arrangement 3

the flow was found to be turbulent at Station i, and that the boundary

layer thickness was approximately .6 inches. The total pressure profile

at Station I was then measured using the flattened total-head probe end

the velocity profile was calculated together with the skin friction at

the wall (see Section 2.4.2). The defect plot of the velocity profile

was then compared with the zero pressure gradient profile of Mellor
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and Gibson (1966). The comparison is excellent and the result is

shown in Figure 24. The calculated profile is given by the solid line

in the figure. The result indicates that an equilibrium turbulent flow

exists at Station i.

The rotating-wire technique was used to measure the Reynolds

stresses. Firstj the straight probe with the straight wire was used

and this gives the following three Reynolds stresses, namely u 2 u-w

and w2 (see Section 2.4.3 for turbulence data reduction). Then the

slanted probe with the straight wire was used. In order to get uv

and v2 with this probe 3 vw has to be either known or assumed zero.

In light of the fact that for two-dimensional flow_ due to symmetry

about the center line plane_ the off-diagonal elements of the Reynolds

stress tensor, except uv _ are necessary zero. Therefore 3 the assump-

tion of _ = 0 was made so that u--v and v2 could be calculated.

In addition, if the measured uw were indeed very small it would provide

an independent check for the assumption_ while at the same time, it would

also serve to show the two-dimensional nature of the flow. To see if

this is true, the measured uw was plotted against the measured uv

at Station l, and is given in Figure 25. It can be seen that nowhere

inside the boundary layer w_s (_-Qu_) greater than .05 This shows

that the flow was relatively two-dimensional. To further substantiate

/u
' _ v'/Upw w'/Upw and _/u 'v'this claim, the measured _-V__2_, u ,-pw '

were plotted against y/5 and compared with the flat plate data of

Klebanoff (1955). These are shown in Figures 26 to 30. In general, the

measured data compare favorably with Klebanoff's data except near the

wall. This is because the rotating-wire technique is not very accurate

in region of high shear (see Bissonnette 1970). From these measurements,

it can be concluded that the flow was in equilibrium and was indeed two-

dime n sional.

After the first set of experiments with the convex wall was finished,

the pressure distribution on the test section was set up to give a

_7



separating flow in the curved tunnel. In order to makesure that the

sameentrance flow exists in this case as in the constant pressure

flow case, measurementsat Station I were repeated again. Surprisingly,

the measuredvelocity profile did not showany noticeable difference,

but the measured _-_ was found to be much larger than before (at one

point u-Qu_ even amounts to _.2). Also, the measured u-v/u2 was
T

noticeably smaller than the previous data. After a long and tedious

check on the equipment and the rotating-wire technique (including the

test of the technique in the fully developed pipe flow) it was found

that the flow was not transisting properly. The improper transition of

the flow was caused by the loosening of the tripping wire. As a result,

the transition was not uniform along the wails, thus creating a certain

skewness in the flow, and the off-diagonal elements of the Reynolds

stress tensor was no longer zero. To correct for this, a tripping

device proposed by Hama (1957) was used.

Briefly 3 the tripping device consists of isoceles triangles made

of either electrical tap or aluminum sheet. These triangles are then

cemented to the walls of the tunnel so that the vertices of the triangles

are facing the flow. According to Ham, the device was very efficient,

and anchored the transition right at the tripping device. With this

modification, the measured uwu/_ was again found to be less than .08

across the boundary layer. However, the boundary layer at Station 1

was found to be approximately 20% thicker than the previous measurement.

The measured velocity profile together with the various Reynolds stresses

at Station 1 for the case of separating flow along convex wall are showu

in Figures 24, and 26 to 30. Again the flow was in equilibrium and was

two-dimensional.

When the test wall was changed to the concave wall, the same

measurements were performed at Station 1. However, in this case, the

wall opposite the previous test wall was the test wall. The results

of these measurements are again plotted in Figures 24, and 26 to 30, and
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they show that the flow was in equilibrium and two-dimensional. In

addition, they show that the flow in the straight section was very

uniform.

2.3.2 Pressure Distribution on Curved Test Section

In the course of setting up the wall static pressure distribution

on the convex test wall it was found that the pressure decreased

slowly as the flow approached the entrance to the curved section, and

then steeply as the flow entered the curved section. The pressure drop

amounts to more than 60_ of the reference dynamic head. An effort

was made to reduce this amount of pressure drop by increasing the

cross-sectional area right at the entrance, but to no avail. Later

it was found that the flow was separated on the adjustable wall and

right at the entrance to the curved test section. Therefore, increasing

the cross-section area at this section merely increased the separated

region, and the flow on the test wall was undisturbed. To correct this,

a side wall jet was installed on the adjustable wall and right at the

entrance to the curved section. The jet is merely an opneing, four

feet high, on the side wall of the tunnel. The pressure difference

between the outside and inside of the tunnel provides sufficient

momentum to the jet. The opening of the jet is controlled by a flexible

flap attached to the straight wall. The flap extends 8 inches into the

straight section; thus providing some control on the flow approaching

the curved section. The jet and flap control mechanism are shown in

Figure 31. With this arrangement; it was found possible to reduce the

pressure drop to about 30_ of the reference dynamic head. However,

the pressure drop cannot be eliminated completely. Because of this;

the final constant pressure distribution set up on the convex wall was

at a different lewl from that of the straight wall. Immediately after

the pressure drop; there was a slight pressure increase. All these

occurred within a distance of 6 inches, from x = 46 inches to 52 inches.



After that the adjustable wall was adjusted to give the minimum possible

variation of wall static pressure on the convex wall. The above adjust-

ment was done with no regard to the secondary flow in the tunnel.

Therefore, it was no surprise to find that the secondary flows measured

at Stations 3 and 5 were quite appreciable. Means were introduced to

control the secondary flow (this is discussed in Section 2.3.3) and

this changed the pressure distribution. The secondary flows were

adjusted to a minimum and the adjustable wall was again set to give

the best pressure distribution. The final pressure distribution obtained

for the case of constant presuure flow along convex wall is shown in

Figure 32. The final setting of the adjustable wall is given in Figure 3.

Finally, the wall static pressure at planes 14 inches above and below the

tunnel center line were also measured. If these measurements were plotted

on Figure 32, they would overlap the tunnel center line measurements.

Therefore, for the sake of clarity, the off-center line wall static

pressure measurements are not shown.

In setting up the pressure distribution on the convex wall for

the separating flow case, the objective was to have a linear decelerating

potential velocity at the wall (Figure 82). By pulling back the adjustable

wall, this was relatively easy to set up in the curved section between

x = 50 inches to 60 inches. After x = 60 inches, the pressure distri-

bution began to level off. Again, the adjustable wall was pulled back,

but there was relatively little change in the pressure distribution at

the test wall. At this point, the flow was suspected to have separated,

but the line of separation was not known. In an effort to locate the

separation line, tufts were attached to the convex _ll between x = 60

inches and 70 inches at an equal spacing of two inches apart. The effort

proved to be futile, but it did seem to indicate that separation did not

occur along a straight line from the top to the bottom of the tunnel.

There was clear indication that the flow separated first near the top

and bottom of the tunnel and further downstream along the central
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portion of the tunnel.

Attempts were made to move the separation curve _urt_r downstream

by readjusting the whole adjustable wall. The results was a non-linear

distribution of decelerating potential velocity at the convex wall.

After much trial and error, the original pressure distribution was set

up. This is given in Figure 32. The final setting of the adjustable

wall is shown in Figure 3. The linear distribution of decelerating

potential velocity at the w_ll is displayed in Figure 81, together with

the actual measured potential velocity at the wall. As far as can be

made out from the tufts_ separation occured somewhere between x = 66

inches and 70 inches. Later measurements of the velocity profiles lend

evidence to this. The secondary flows at Stations 3, 5, 8 and !0 were

then measured, and the end-wall jets were adjusted to give the minimum

secondary flow at these stations. The pressure distribution was measured

again, but in this case no repeated adjustments were made as in the case

of the constant pressure flow. The final results are those mentioned

above. The secondary flow measurements are discussed in detail in the

next section.

The wall static pressure at planes 14 inches above and below the

tunnel center line was n_asured. The difference between these n_asure-

ments and the tunnel center line measurements were very small at the

leading section of the convex wall, and became noticeable near separation.

However, for the sake of clarity, they are not sho_m in Figure 32 .

For the concave test wall, the pressure at the wall increases as

the flow enters the curved section. In order to reduce this pressure

increase, the flow in the region upstream and downstream of the entrance

to the curved section was accelerated by adjusting the adjustable wall.

As a result, no side wall jet was necessary. The adjustable wall extends

one foot into the straight section, and this provides sufficient

adjustment for the region upstream of the entrance to the curved section.

Again, after much trial and error, the final constant pressure distribution



set up on the concavewall is at a level about 22_ higher than at the

straight section. The pressure distribution is given in Figure 33_

while the final setting of the adjustable _Tall is sho_.auin Figure 4.

In this case, the variation of the wall static pressure in the stream-

wise direction is greater than the corresponding case with the convex

test wall. Efforts were madeto reduce these variations but to no avail.

The wall static pressure at planes 14 inches aboveand belcw the plane

of symmetrywasalso measured. Again, there were noticeable differences

between these measurementsand the tunnel center line measurements. To

showthe extent of these variations, the off center line wall static

pressure measurementsare also shownin Figure 33-

As in the case of the constant pressure flow along convexwall,

the secondary flows at planes 16 inches aboveand below the tunnel center

line were measured,and the end wall jets were adjusted to give the

minimumsecondary flow. The pressure distribution was then re-set and

the secondary flow was again measuredand readjusted if necessary. The

whole procedure was repeated until a satisfactory pressure distribution

wasobtained together with a reasonable secondary flow at the stations

where mea_;urementswere mde. The secondary flow measurementsare

discussed in detail in the next section.

2.3.3 Secondary Flows in Curved Test Sections

As has been explained in Section 2.2.2, secondary flows exist near

the end walls of the tunnel because of the longitudinal curvature of

the test section. The influence of this end-wall flow can extend to

the tunnel center line.

When the tunnel was first designedj it was thought that if it has

a large aspect ratio, the secondary flows would be essentially confined

to small regions near the end walls. However, initial yaw measurements

at Stations 3, 5, i0 and 12 on the convex wall, with the constant pressure

distribution along it_ revealed that the measured yaw angles at Stations 3_
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and 5 were approxirmtely equal _ud were opposite in sign but they

reached a m_ximumof _ I0° . The maximumr_achedat Stations i0 and

12 wasabout 20_ . To reduce the secondary flows, end_all jets were

installed on the top and bottom walls of the tunnel and right at the

entrance to the curved section (FiGure 31). A series of four tangential

jets were installed on each end wall. The jets were madeof i/8 inches

I.D. tube; and were supplied by a high enoughpressure to give critical

flow at the jet exits. Thus; the amountof massflow added to the

tunnel flow is quite small while the amountof momentumadded is enough

to compensatethe momentumdefect of the end _all boundar%_layers at the

position of the jets. This additional momentumis sufficient to reduce

the secondary flows considerably even at Stations i0 and 12.

With the end wall jets installed; yawmeasurementswere again _mde

at Station 3; 5; iO and 12. The maximumyawangles at Stations 3 and 5

and I0 and 12 were found to be less than 2_ and 4° respectively. By

monitoring the yawangles at Stations 3 and 5; repeated measurementsof

the pressure distribution along the convexwall and continually adjusting

the adjustable _all to give the minimumvariation in the streamwise

pr(ssure; it _as possible to set up the best constant pressure distribu-

tion on the convexwall. The resultant yawmeasurementsat Stations 3;

4 _ i0; ii and 12 are shownin Figure 34. The flow in the tunnel was

relatively two-dimensional. L_ter velocity profiles and turbulence

rs_surements lend support to this claim..

Essentially the sameend wall jets operating at the sameconditions

were used to control the secondary flexes in the case of separating flow

along convexwall. In this case; becauseof the addedcomplexity in

setting up the correct pressure distribution; the procedure followed

was different from that adopted in the case of constant pressure flow along

convexwall. The correct pressure distribution was set up with the end

wall jets operating at the optional conditions. Then; yawmeasurements



w_re made at Stations 3, 4, 5, 8, 9 and i0. The results are shown in

Figure 35j and for the sake of c!arity_ the yaw measurements at Stations

4 and 9 are not shown. The n_ximum yaw measured at Station 4 was less

than I° and that at Station 9 was less than 2_ . Although the flow along

the tunnel center line is quite symmetrical, the secondary flows at

Stations 8 and i0 are considered large. Attempts were made to reduce

this by installing larger jets to the end walls. This managed to

reduce the secondary flows. However, the pressure distribution along

the convex wall was disturbed, and it was not possible to obtain a

linear decelerating potential velocity at the wall. After much trial_

it _as finally decided to go back to the original set up. Later

velocity profile and off center line wall static pressure measurements

seem to indicate that the flow was relatively two-dimensional up to

x __ 60 inches. Downstream of x = 60 inches, the influence of the

secondary flow can no longer be discounted.

For the case with the concave test _all, secondary flow measurements

were taken on the adjustable wall opposite the concave test wall. The

reason for doing this is because of the existence of the system of

longitudinal vortices. Under the influence of the longitudinal vortices,

the secondary flow measurements would depend to a 3arge extent on where

the measurements were taken. As a result, the true influence of the

end-wall secondary flows cannot be estimated.

From previous experiences_ yaw measurements at tunnel center

line were fcund to be unnecessary. For this reason yaw measurements

were made at planes 16 inches above and below tunnel center line at

x = 70 and 96 inches for the case of constant pressure flow along concave

wall. The same end wall jets were used to limit the secondary flows to

small regions near the end walls. The pressure distribution was set up

on the concave wall, and yaw measurements were made at the off center

line stations at x = 70 inches. The supplied pressure of the jets

was then adjusted to give minimum yaw at the two station_ where
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measurements were r_de. The pressure distribution %ms measured again,

and if considerable changes were noticed; the above procedure was repeated

all over until a satisfactory pressure distribution on the concave test

wall and a relatively small yaw profile across the boundary layer on

the adjustable (convex) wall were obtained. The final yaw measurements

at x = 70 and 96 inches are given in Figure 36.

2.4 Data Reduction

2.2.1 Calculation of Velocity Profiles

_--_P: Bernoulli's equation may be written as
Assuming _y pkU 2 ;

i _Pr)e2kypU2 = Pt " Pr + [Pr - Psw - 2k fo(Pt dy]e "2ky (2.4.1-i)

where the reference pressure P is here taken to be the total pressure
r

in the potential core so that Pt - Pr _ 0 outside of the boundary

layer. Therefore the potential velocity is given by

- Pr)e2_ dy]e-2ky (2.4.1-2)oU2 : {Pr" P -2kF o(Pt
p sw

Within the boundary layer ky < 0.i and it is possible to simply

represent the potential velocity according to Up (_ Upw(l-ky) (see Section

4.2). Furthermore_ the integrals in equations (2.4.1-i) and (2.4.1-2),

which represent the difference between the static pressure calculated

from the actual velocity and the potential velocity; are small. Therefore

it is possible to write

U 2 Pt - Pr -2ky
-- - + e (2.4.1-3)

and

U 2

-P--- =
2

Upw

-2ky
e (2.4.1-2)
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where

1 2
_Upw = Pr - Psw (2.4.1-5)

In Figure 37 the result of using equation (2.4.1-3) to reduce

the data is compared with that of equation (2.4.1-1) which is also

normalized with equation (2.4.1-5) instead of equation (2.4.1-2) after

setting y = 0 The latter would be the consistent normalization if

equation (2.4.1-1) were used, but then no distinction would be visible

in Figure 37.

As discussed in Section 4.2, the present procedure is consistent

with the boundary layer equations used to compute theoretical profiles.

It should be noted that throughout this investigation ky < 0.i and
-ky

e __ i - ky . However, it appears exceptionally convenient to retain

the complete exponential form.

2.4.2 Skin Friction Deduction

The skin friction at the wall was not measured, but rather it was

obtained from the Clauser plot (1956). For curved flow, the skin

friction is defined as

1 2
T - _ cf p u (2.4.2-i)w pw

and since the Clauser plot is independent of the reference velocity

chosen to make the velocity profile non-dimensional_ the reference

velocity is here chosen to be U ; The velocity profile was calculated
_w/j

and U_p w was plotted aginst log'-PW . On top of this was superimposedv

several plots of the Law of the Wall for different values of Cf . The

line that passes through the most numbers of experimental points is

taken to give the correct Cf for the measured profile. The correct

Cf becomes a bit difficult to decide for the near separation profiles.

Two sample plots of the velocity profiles for the determination of Cf

are shown in Figure 38.
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2._.3 Calculation of the Reynolds Stresses

The gener_l equations for analyzing the hot-wire signal were

derived by 3issonnette (1970). However, they are reco_ded here for

reference. These ecluations are specialized for the use of a lineari;_er

with calibration constant h .

Straight Wire on Straight and Slanted Probes

(2.4.3-_)

e'2 = h2 {f2(_)_

(2._.3-2)

where

2

2
v

2
w

: u

-f 2 -f 2
= v sin e + 2vw sin_ cos0 + w cos 8

= 2 __* 2 2v-S*cos 0 - 2vw sine cos9 + w sin e

_V = - _V sinO + nw cos0

__* __*
uw = - uv cos@ + uw sin_

vw = - v 2 sin_ cos@ + vw sin @

- w_ cos O + w sinO cosO

(2.&.3-4)

e is the angle between oz axis and the normal to the wire; and

¢ ; 6 and _ are defined in Figure 18.

Slanted Wire on Straight Probe

sine : sin 7 sin(_-_) (2.4.3-5)

°-L--hQf( )
.---. 2 .__.

2 2 {f2(_ 2 cos£ ,2( v2' : h )u + f _) +
EL cos2¢



2 ---,

+ _ oos2(5__)f,2(¢)w2 _ 2 _os7
2 cos¢

cos ¢

-X-
J s_Tcos_ cos(s-_) f,2(¢) wf(,) f,(,) uv + 2 2

cos ¢

- 2 sin-----Z-Ycos(5-_) f(¢) f'(¢) u'w*)
cos¢

42.4.3-7)

where

2 u-_ 2 --_ sin2u : cos _ - 2 uw sin#cos# + w 2

-7 -2 _
V = V

2 2 2 _ 2 2
w = u sin # + 2 uw sin_eos# + w cos

uv : uv COSl3 - vw sin#

-- ---46 ---ge

vw = uv sin_ + vw cos_
---W

-- cos2 7 2uw=uw ( - s_ )+(u - ) s_co_

(2.4.3-8)

The quantities with an asterisk refer to flow quantities defined

in a frame of reference attached to the wire (wire coordinate system)

while those without an asterisk refer to flow quantities defined in a

frame of reference attached to the tunnel (tunnel coordinate system).

For the two cases where the test wall was convex_ all measurements

were made in the tunnel center line_ therefore the cross-flow was very

small (except near separation in the separating case) and # __ 0 With

the straight wire on the straight probe_ e = _/2 and the wire coordinates

coincide with the tunnel coordinates. As a result, equation (2.4.3-4)

= -
is much simpler and u = _ v = v _ uv = uv , etc. With the

straight wire on the slanted probe_ e __ 46 ° and the turbulent stresses

are given by equation (2.4.3-4).

For the case of constant pressure flow along concave walls, measure-

ments were tsdqen at the position of the crest and trough of the wave

system and it was argued that the cross-flows at those two positions were
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ver V slr_ll, (for reason why refer to Section 3.3) hence _ _ 0 This

again allows the equations for the signal analysis to be further reduced.

The x coordinate of each plot is calibrated to give the angle of

rotation 5 Once $ and _ arc known, ¢ is given by either

equations (2.4.3-1) or (2.4.3-5). The function f(¢) is normalized by

the maximum on the trace, i.e. e%(O) and is therefore given by

e-L(*1
f(,)

e%(0)
(2.4.3-9)

For the sake of simplicity, the functional form proposed by

Champagne et. al. (1967) for f(¢) is used, i.e.

f2 2 2 2(¢) = cos ¢ + k sin ¢ (2.4.3-10)

where k

equation (2.4.3-10) to the experimental data.

mean value over all data points_ it is given by
i

k -
N 2

i=l sin ¢.
l

is a constant_ and is determined for every run by fitting

2
Taking k to be the

(2.4.3-11)

With the function f(¢) defined_ the turbulence stresses u 2 , w 2 and

uw can be obtained by least square fitting equation (2.4.3-3) to

the experimcntal record of e '2 These values are then substituted into

L _. -_ .
equation (2.4.3-7) and the other Reynolds stresses uv , v and

are computed by a similar technique.

As explained earlier_ the cross-flows are small for all cases of

measurements and hence no corrections are necessary. Hence, in adapting

Bissonnette's (1970) data reduction program for the present purpose

was set equal to zero. The accuracy of the rotating-wire technique was

tested in a fully developed turbulent pipe flow experiment. From the

measured axial pressure drop, the shear stress distribution across the
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pipe can he c_zlc_.z!atod and this -is used to check the meo_surcd she:_r

...... file.,or(-o,_ pro • In g(:noral; the accur:_cv of the: rotatin6-wi_,c tc,chni%le

is very good except near the -,.ca,I!. Tilis ex_triment is described in

detail in ApponRL< C.
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Chapter lii

DISCUSSIOH OF RESULTS

in the following, the discussiou is divided into thr(e sections.

The first deals with the results of the constant pressure fl_, a.lon C

convex wall_ the second concentrates on the results of separating flow

along convex _._,]i_ while the third discusses the results of the const'unt

prcssur,_ flow along concave wall. The discussion takes the following

for_mst. The mean flow d_ta are anaAj,,sed first and this is then followed

by a discussion of the t<mbule_tce data. The results of these experiments

art tc_bu]at_d and arc given in Tables 1 to 35. 9_bles 1 to 12 conrail

t_,_<, rcsuIt:_ of the mean flow a_d turbulenc,:_ measurements of the constant

pressure flow along convex _zo,ll exper,%nent. Tables 13 to °5 contain the

dat_< of the m<_'_n flow <_nd turbRlence measurements of the separating

flow along c,3nw,x w_,l.],expcrim,:n_t_ send the mean flow and turbulence

d_ta of t}K constant pressure flow along contrive wa]] experiment are

f ., .

given in T_b}cs m,o to 55. For all. three expc, rim_cnts; the frec stream

3.1 Constant P_,'<,ssu_e Fie-, _ .'_d_ong Convex t,'a]_l

The' end w_]] jets w'.r._ installed for the sole purpose of controffigtg

th< scco_dary flows in the, cu:rv_ d test s_-,cl,ion of the turn-el. E\;id,cncc.

th_% the flow w_s \,e.ry n_-_yl} _ i;,;o-dJ_x_ns.[orzd were the sm:%!_] y'_w _nS]es

measured at Si_%tions __, _, .5; lO_ ll and 12 (t_:o-_< 34)_ amd tb;_._

ap]xxrently identical prcsst}z'c distributions at tunn_l center line and

planes above and. below the tun,"._] c<nter ]irx_. Besi@_s_ th_ velocity

profiles me_%sured at Ststions 3 _.r}<l 5 and 10 and 12 were no different

from those mca',Rtred _t Stations 4 and ii m,_spectiw'.,ly (F:L_no 3:3'). To

further check the two-d.br/;nsiona] ity of ti_c, flow; t]:c yon Ka]"_mn

momentum int,:i<Kd was imt,ograted according to th<_ method proposed by

C O10 Z < if }'I_:_l ) "
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The yon Karman momentum integral is derived in Section 4.2, and

is given by equation (4.2-22). It can be written as

2

u_ de 8 dUpw dk

U 2 - dx + (H+2) q(x)Upw d x

whe re

P P

Following Coles (1968) procedure, the equation can be written as

2 2 2

x u UVw 0 x *

: 1 + ½/%
o o o (ul_) °

2

1
R 2+ (u o) /Xo

o

(3.1-i)

where the subscript o denotes measurements in a reference station. To

integrate this equation_ values of 5 _ 8 and u at the various stations

are required. The values of 5 and 0 are obtained by direct numerical

integration of the measured profiles_ which are shown in Figure 39,

while the skin friction is obtained from the Clauser plot. The values

thus obtained are plotted verses x in Figure 79_ together with the

shape factor (H) development. From these measured values, equation

(3.1-1) is integrated numerically and the result is shown in Figure 40.

It can be seen that all along the convex test wall PL (it denotes the

quantity on the left hand side of equation (3.1-1)) is not too much

different from FR (it denotes the quantities on the right hand side of

equation 3.1-1)), hence the two-dimensional momentum integral is satisfied

and the flow can be said to be relatively two-dimensional. Further evi-

dence of two-dimensionality is provided by subsequent turbulence measure-

ments, however_ this will be discussed later.
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Since the skin friction is not measured independently, the moment_n

balance calculation depends to a large extent on the validity of the

Clau_er plot to determine Cf for curved flow. To demonstrate the

wdlidity of this method it is necessary to show that the Law of the

Wall holds even for turbulent flow along convex surfaces. The

measured velocity profiles were plotted to show the Law of the Wall

region using the u determined from Clauser plot. If the Law of the
T

Wall indeed holds for curved flows as well as for plane flows, then a

straight line having a slope of 5.6 can be dra_aa through all the data

points in the wall law region. The result is sho_ in Figure 41, _ere

it can be seen that the measured profiles all show the existence of

the wall law region. Also, all the profiles shown start to deviate

at about the same point (yu_/w __ 200) where the flat plate profile

(Station i) begins to deviate from the Law of the Wall. Thus_ it can

be seen that the Law of the Wall, which is given by

yu

u _ 5.6 los _ + B (3.l-S)
U V

T

also holds for flow along convex surfaces. However_ this should come as

no surpris_ because in this _gion the mean flow strea_mlines are

essentially prallel Lo the surface.

By comparison with plane flow_ the Defect l_w for convexly curved

flow can be written as

where

U -U

-F(p (S.l-3)
,[

U -U

O U T

If the defect region overlaps with the wall law region, then the function



F(y/_) can be sho_ to be

F(y)~ - 5.61o y + Af_

14ellor and Gibson (1966) have pointed out that A is not truly a

constant. Instead, it is a function of the equilibrium i_rameter

$* dp

Tw dx ' and for _ 0 • which is the flat plate flow, A __ - 0.6

Since the Law of the Wall also holds for constant pressure flow along

convex surface, therefore, the Defect Law as given by equation (3.1-3)

should also hold. However, A should also be a function of some

curvature parameter. A semi-log plot of (Up-U)/u_ verses y/f_ will

indeed show that A depends on curvature. This is displayed in

Figure 42. Therefore, it can be seen that A = A(_/R ,_)f

The assumption of an overlap region means that U can be described

equally well by the Law of the Wall (3.1-2) or by the Defect Law (3.1-3).

These equations may be added to give the skin friction equation

1

C_ UPw( ) - u - 5.6 log R-_ + B + A (3.1-5)
T

where _u_ = U _ is substitmted to give the final equation and
pw

_ .is the Reynolds number "eased on which as defined as

-- Up

pw p

In obtaining equation (3.1-5), it is assumed that U _ U as
p I_

y/f_ _ 0 . The skin friction equation thus deduced is quite general.

It applies to all types of bounda_ layer flows over plane or convex

The reason for suggesting _/R is because for the present experiment

8*/R is constant. Besides, _ remains relatively constant along

the convex }_ii] thus, rendering $/R a very natural curvature

parameter to use.
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surfaces so long as A(_/R,_) is known.

For convex curvature, A is positive_ therefore_ accordLug to

equation (3.1-5)_ Cf will decrease faster than the corresponding flat

plate flow. This means t_t the flow is less "turbulent-!ike"_ and as

a result, the flow cannot sustain as high a pressu_e gradient as lhe

the corresponding flat plate flow. In other words_ under the action

of the same adverse pressure gradient_ the fl_ over a convex surface

will separate first. This is a direct consequence of the reduced mixing

activities between fluid layers, which can be seen from the following

explanat ion.

For flows over convex surfaces, the centrifugal force on a fluid

particle must be balanced by an inward pressure gradient. If a particle

is moving too slowly_ its centrifugal force is too small, and it moves

inward. Hence _ it can be seen that the fluid particles that move away

from the surface carry with them the velocities at the points where they

come from will _ve a s_ller centrifugal force at their new locations .

As a result_ they will be pushed inwards by the pressure gradient and

hence the interchange of moment_ energy_ etc. _ between the faster

and the more slowly moving l_rticles are hindered. Thus mixing of

momentum in the boundary layer will be reduced. This is evident from

the measurements. At Station i_ the boundary layer thickness, $ _ is

about 0.55 inches, and $ grows to about i inch at the entrance to

the curved section. The boundary layer thickness at Station 2 is about

i inch, and it remains constant up to Station Ii (Figure 39). Thus, it

can be seen that the boundary layer has not grown at all under the

influence of convex curvature.

By comparison with the flat plate equilibrium boundary layer_

This is Prandtl's mixing length argument which says that the linear

momentum of the fluid particle is conserved when it is displaced from

layer y to a new location at layer y + dy .
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U -U

A = f _ dy should be a characteristic length in the defect region

o uT Up-U y
of the boundary layer. Therefore_ a plot of verses would

show whether the present flow has reached an equilibrium state or not.

Such a plot is given in Figure 43. From this plot, it appears that the

flow has reached equilibrium at Station ii. However_ this condition

is not sufficient to demonstrate the equilibrium nature of the flow.

Further evidence should be obtained from the turbulence measurements.

This point will be discussed again in the following.

The decrease in mixing activities is also evident from the

turbulence measurements. The distribution of turbulence intensities

and turbulence energy are shown in Figures 44, 45 and 46 respectively.

It can be seen that there are significant decreases in turbulence

intensities across the boundary layer. Of course 3 the results are

influenced by the favourable pressure gradient at the entrance to the

curved test section.

After the favourable pressure gradient 3 which only extends to

Station 23 the only external force that acts on the fluid particles is

the centrifugal force created by the convex curvature. In the absence

of wall curvature 3 the boundary layer would recover from the

favourable pressure gradient and flat plate equilibrium would again be

reached at about Station 9 (later calculations lend evidence to th_s).

This means that mixing between fluid layers and turbulent diffusion

would bring the level of turbulence right back to the flat plate values*.

However, under the influence of convex curvature 3 t_e turbulence

intensities are prevented from recovering. This is clearly evident from

the measurements at Stations 73 9 and ii (Figures 44_ 45 and 46).

Convex curvature acts to prevent mixing and diffusion of fluid particles

outward 3 therefore_ after the decrease in turbulence activities caused

*As evidence by the fact that the turbulence measurements at Station i

correlate well with Klebanoff's (1955) data. This shows that the distri-

butions of u'_l , v'/U I and w'_l are t_ same for all equilibrium

flat plate boundary layers.



by the favourable pres_ure gr_adient; the centrifugal force prevents any

further increase in turbulence intensities. This is why the turbulence

measurements at Stations 7, 9 and ii are quite similar to each other.

It should be pointed out that there are very little turbulence activity

in the outer part of the boundary layer_ i.e. y/5 > 0.4 Instead of

increasing from Stations 7 to llj the turbulence intensities decrease.

On the othe_- hand_ the turbulence intensities near the _ll increase

slightly from Stations 7 to ii. This indicates that the effect of

curvature it much greater in the outer part of the boundary layer than

near the wall. On the other hand_ the similarity of the distribution

of the turbulence intensities at Stations 7_ 9 and ii seems to indicate

that the flow has reached a new equilibrium state. If this is so, then

the shear stress profiles at Stations 7j 9 and ii should also be similar

From examination of the measured shear stress profiles in Figure _7 it

appears that the flow has not reached an equilibrium state.

The flow; after recovering from the initial favourable pressure

gradient; settles into a kind of quasi-equilibrium state where an inner

region of rotational mean flow and non-zero Reynolds stress (y/5 < 0.4 in

Figure 47) is embedded in a larger region (y/5 < i) of rotational mean

flow but zero Reynolds stress. Presummbly the inner region would

slowly grow until it coincides with the mean rotational region. Only

then will it be an equilibrium flow in the conventional sense. In the

outer part of the boundary layer; it is clearly evident that the

"curvature effects" counteract the usual shear stress producing mechanism.

Since the shear stress is not measured by a conventional nmthod;

there is always doubt as to the reliability of the data; especially the

"inviscid like" nature of the flow in the outer l_rt of the boundary

layer. For the present case; a slanted probe with a straight _{iz'e is

used to measure u--v; _ and _ . It _as pointed out in Section 2.4.3

that in reducing the data for u--v and v2 ; _ is assumed zero. This

assumption is justified because of the relative two-dimensionality of



the flow . As an independentcheck_ the measured u-w (which can be

obtained directly by rotating the straight probe with a straight wire

in the u and w plane) is found to be very nearly zero. A plot of

uw and uv measuredat Stations i and ii is given in Figure 25. It

can be seen that nowaereis uw greater than 5%of uv . This not

only serves to showthe true two-dimensional nature of the flow in the

curved test section, but also the reliability of the measuredshear stress

profiles and the fact that the stress vanishes when y/5 > 0.4

The distribution of shear correlation coefficient is given in

Figure 48. For equilibrium flat plate boundary lyaer, the shear corre-

lation coefficient is constant ( .5) for a greater part of the boundary

layer, but drops to zero rapidly near the edgeof the boundary layer

(measurementsat Station i). For flow over convex surfaces, the shear

correlation coefficient also remains constant (the constant varies from

Station to Station) for a greater part of the "shear thickness", but

drops to zero rapidly near the edge of the shear stress profile. The

constant reachedby the shear correlation coefficient is .38 at Station 9

and .45 at Station ii.

The turbulent energy equation can be obtained by adding equations

(E-14), (E-15) and (E-16). The result is

Dq2/2
Dt _ _-_ (_U (_---- + k) [(q_3 v) _q2/2

+ _" 2 _ _q2/2)
+ (_---By k) [(q_3 +v) _--] + _y [q_2 _y

_3

A

(3.1-12)

From this equation and the three fluctuation components given by equations

(E-14), (E-15) and (E-16) or equations (E-l), (E-2) and (E-3), the following

For two-dimensional flow, because of symmetry about the center line

plane, uw and vw are neceszar_ _ zero.



points can be noted. First, turbulent energy is not produced only in

2u as in the case of a plane flow but also in v2 Second_ the transfer

of energy between u 2 and v2 is due both to the pressure fluctuation

and also to the term appearing in equations (E-I) and (E-2).
l+ky

Third, the total energ_y production on all fluctuation components is

uv By -

A plot of the energy production is given in Figure 49. The smaller

turbulent ener_ production explains the smaller turbulence intensities.

Finally_ the influence of the v2- production term, (+2/: _-V U) in

equation (E-2) or (E-15) on the flow should be pointed out. For flows

over convex surfaces_ k is positive_ therefore 2k h-V U is positive

and this means a suppression of v2 production. Hence_ the radial

movement of a fluid particle is suppressed. As a result_ mixing

activities between fluid la_r are reduced. This means that radial dis-

placement of a fluid particle in flows over convex surfaces is stable.

Eskinazi and Yeh (1956) were the first to point out that this is in

agreement with the stability criterion put forward by Rayleigh.

The advection and the production by normal stresses are also cal-

culated and shown in Figures 50 and 51 respectively. In flat plate boundary

layer the advection is very much smaller than the production except in

the outermost part of the layer. The present result shows that in the

inner part of the layer Cy/5 < 0.4), the advection is one order of magni-

tude smaller than the production (Figure 50). As to the outer part of

the layer_ curvature counteracts to reduce turbulence. The result is

that the advection is nearly zero in this part of the layer. The production

of normal stresses has been evaluated (Figure 51) to show that it is

always small in comparison to the production. For the present experiment_

the production of no_m_l stresses is about two orders of magnitude smaller

than the production.
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3.2 Separating Flow Along Convex Wall

The setting up of the adverse pressure gradient for this experiment

has already been examined in detail in Section 2.3.2 _ therefore, this

will not be discussed again. However, it should be pointed out that a

separating flow was obtained on the convex test wall. Although it _s.s

not possible to locate exactly the separation line, indications are that

separation occurred around Station ii_ at x = 66.0 inches. In this

connection_ it should be mentioned that later boundary layer calculations

predict separation to occur at x = 67 inches (see Section 4.6.1).

Because of the disturbing influence of the secondary flows near the end

walls of the curved section, most likely separation would not occur

along a line parallel to the z axis. Yaw measurements at Stations 8

and i0 (Figure 35), incidate tb_t there is significant cross-flow at

x = 62.5 inches. This means that there is convergence in the flow at

this plane, and as a result, the flow would most likely serrate first

near the end walls than along the tunnel center line. Velocity profile

measurements at Stations 8 and i0 (Figure 52) lend evidence to this as

do the measurements of wall static pressure at planes 14 inches above

and below tunnel center line. Because of this, the flow in this region

can no longer be said to be two-dimensional. This fact is borne out by

the moment_n balance calculation.

In order to _ke use of equation (3.1.1) for the momentum balance

calculation, the skin friction Cf and the boundary layer integral

parameters 5* and 0 have to be ]uuown. Since the Law of the Wall is

indepenc]ent of the free stream conditions, _ud has previously been

verified for flow over convex surfaces, it is assumed to be valid for

the present experimental flow. This means that Cf can again be deter-

mined from the Clauser plot. The velocity profiles are numerically

integrated to give $* and 0 Because of the errors involved in the

velocity profile _asurements near separation (i.e. at Stations 9 and ii)_

the calculated 5* and 0 at these two stations would be s_ller than



the true values. This should be borne in mind when examining the

momentum balance calculation.

The results of the rrJomentum balance calculation using equation (3.1-1)

is given in Figure 40. It can be seen that up to x = 59 inches, the flow

is fairly two-d_nensional, but the flow begins to deviate from two-dimen-

sionality after that. This is consistent with all other measurements.

The development of _{ and e is shown in Figure 83 and the

development of Cf and H is given in Figure 84. It can be seen that

B* and O increase steeply to_ards separation. However; b* increases

much faster than e , resulting in an extremely large slope for H near

separation. Again, this lends evidence to the fact that the flow

separates around x = 66 inches. Because of the errors in the velocity

profile measurements near separation, the Cf determined from the

Clauser plot would also be in error. Since near separation, the measured

velocity is higher than the true value, the Cf determined from Clauser

plot would tend to be greater. This is borne out by the fact that the

measured Cf at Stations 9 and ii are greater than the calculated Cf

(see Section 4.6.1 and Figure 84).

The measured velocity profiles are plotted in Figure 52, and the

results show that the measurements near the wall at Stations 9, ii and 12

are in error, because the measurements give a near constant velocity in

this region. In actuality, this is not the case; especially at Station 12;

where the flow is known to have separated. Also shown are the off center

line velocity measurements at Stations 3; 5; 8 and I0. Again 3 the

results substantiate the claim of two-dimensionality at Station 4, but

not at Station 9-

The semi-log plot of the measured velocity profiles at Stations 4;

7; 9 and Ii is given in Figure 53. The friction velocity u is calculated
T

from the _asured Upw and Cf • Again; the velocity profiles show the

existence of a wall law region_ and that all the data points in this

region fall on the Law of the Wall; thus giving support to the claim that
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the Law of the Wall also applies to flow over convex surfaces in an

arbitrary pressure gradient. This should come as no surprise_ because

for plane flow_ the Law of the Wall has been shown to be independent of

the free stream conditions.

By comparison with turbulent boundary layers over plane surfaces_

it can be expected that the Defect Law also holds for boundary layers

over convex surfaces in arbitrary pressure distribution. A semi-log

plot of (Up-U)/u_ verses y/A is given in Figure 54. Again, the result

shows that A is also a function of 5/R • Therefore_ the skin friction

relation as given in equation (3.1-5) is also applicable to convexly

curved turbulent flows in adverse pressure gradient.

In previous experiment_ the straight probe with a straight wire

was used to measure u 2 u-w and _ The slanted probe with a straight

wire was used to obtain u--V and v2 _ while _ was assumed zero.

However_ for the present experiment_ due to the disturbing side influence

of the secondary flows at x = 62.5 inches_ it was felt that the assumption

of vw = 0 may not be a good one. Therefore, a straight probe with a

slanted wire was used to measure u-_ , v2 and _ (see Sections 2.2.5

and 2.4.3)_ while the same technique was used for the measurements of

u-_ , u-w and w2 . The results of the measurements at Stations i, 4, 9,

ii and 12 are given in Figures 55 to 62. Since the flow separates around

Station ii, not too much si_aificance should be attached to the measurements

near the wall at Station 12. This is because there is probably a small

reverse flow region at Station 12. However_ the measurements at the outer

part of the boundary layer would provide some insight J,nto the nature of

separated flows_ therefore the data at Station 12 should be examined in

this light.

The _asurements at Station i serve to establish the reliability

of the slanted wire technique to measure u-V . At the same time, the

measured _ would also indicate the validity of the assumption _ = 0

made in the measurements of the previous experiment. The measured u--w
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and _ are shownin Figures 55 and 56 respectively. In Figure 57

the distribution of u2 is shogun. It can be seen that at Station i,
2

non,here arc u-_ and _ greater than 5_ of u Also, the measured

turbulence intensities and shear stress at Station i correlate well with

the measurementsat Station i of the previous exl_erLmentand with the

data of Klebanoff (1955). This establishes the reliability of the

slanted wire technique to measure uv . It also provides evidence to

support the claim that the flow is truly two-dimensional in the straight

section.

As to the measured m--Dand _ in the curved test section, the

results showthat toward separation, u-_ and vw are as high as 2_ of

. This is particularly true near the edge of the bound_zrylayer
--2where u is relatively small as a result of the effect of convex

curvature. At Station 4, u-_ and _ are about i0_ of _ for the

greater part of the boundary layer. However; since the error of the

rotating-wire methodas determined in the fully developed pipe flow

experi_ent (Appendix C) and the measurementsat Station i is about 5_ ,

the flow at Station 4 can still be considered to be fairly two-dimensional.

At Stations 9, ii and 12, even discounting the error of the rotating-wire

method, u-_ and _ still amountto about 15_ of Y . To the best

of the author's knowledge_ no measurements of u--_ and _ are available

for boundary layers in an adverse pressure gradient. Therefore_ it is

hard to estimate whether the u-_ and _ are the result of the effect

of convex curvature or the three-dimensional nature of the flow.

IIowever_ from t_ results of the measurements of the constant pressure

flow experiment, it is very likely that u-_ and _ arise as a result

of the convergence of the flow towards separation.

From the flat plate experiment of Klebanoff (1955)_ it is known that

the fluctuation velocities (u 2 _ Y and Y) reach their maximum very

near to the wall. The separating flow experiment of Schubauer and

Klebanoff (1951) showed that under the influence of an adverse pressure
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gradient, these mxima slowly moveaway from the wall. The same

phenomenonis observed in the present experiment_ but the effect of

convex curvature tends to reduce the maximumreachedby the fluctuation

velocities (see Figures 57-59). Again, this is due to the fact that convex

curvature acts to reduce mixing, and hence suppressesturbulence activity.

In spite of the large adverse pressure gradient (which promotes turbulent

mixing) the turbulence intensities in the outer part of the boundary layer

(y/$ _ 0.4) are still significantly smaller than the corresponding

_alues at Station I (Figures 57, 58 and 59). Comparedwith the results

of the constant pressure flow experiment, it can be said that the effect

of convex curvature is very significant in the outer part of the boundary

layer, and the data seemto indicate that the curvature effect is indepen-

dent of the pressure gradient. This can be seen from a comparisonof
2 2Figures 48 and 60. For the constant pressure flow, _ _ _ .002 at

pw--
y/$ = .4 and this drops slowly to zero towards the edgeof the boundary

layer. For the separating flow q2_ __.002 at y/_ = .5 , and this too

drops to zero in the samemanneras in the case of the constant pressure

flow. The fact that _2 is approximately the samefor Stations 4_ 9 and

ii in the outer part of the boundary layer is an indication that the

effect of curvature is far greater than the adverse pressure gradient

effect.

The shear stress distributions for Stations i, 4, 9, ii and 12 are

plotted in Figure 61. Under the action of an adverse _ressure gradient,

the point of maximumshear stress movesawayfrom the wall. But, howfar

should the maximumpoint be awayfrom the wall_ and howgreat is the

maximumin the absenceof wall curvature cannot be determined, because

of the lack of data for a corresponding plane flow. However,anticipating

the results of the boundary layer calculations outlined in Chapter IV, a

rough est_nate can be obtained. The result of such a calculation is sho_m

in Figure 86. It can be seen that convex curvature acts to reduce the

maximumreached by the shear stress and prevent the point of maximumfrom
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rloving too far a_,_ay from the _all. This will be discussed ik_rther in

Section L.6.1. In spite of the adverse pressure gradient; the shear

rstress again vanishes inside the boundary layer at }/<) __ .5 • This is

another indication that convex curvature in the outer part of the boundary

layer has a much greater effect on the flow than the pressure gradient.

To provide a check for the measured shear stress profiles_ the

boundary layer equations (4.2-15) to (4.2-17) are numerically integrated

using the measured w_locity profiles and the Cf determined from the

Clauser plot. The resultant shear stress profiles at Stations 4; 9 and

ii are then compared with the measured profiles. It was found that the

resultant profiles were quite similar to those calculated by the present

prediction method; and for the sake of clarity they were not shown.

From Figure 86j it can be seen that the measured shear stress is much

lower than the shear stress calculated from the measured velocity profiles.

The discrepancy could be explained by the fact that the flow is not quite

two-dimensional; and by errors in measurements (it is pointed out by

Bissonnette (19_[0) that in regions of very high velocity gradient_ the

rotating-wire method for the measurement of -u-_ becomes inaccurate).

Much the same discussion about turbulent energy production in the

previous section also applies to the results of this experiment; and

hence will not be repeated. However_ it should be pointed out that although

the flow is under the influence of a severe adverse pressure gradient;

there is very little turbulent energy production after y/5 __ 0.5 Even

in the region near the wall_ energy production is severely curtailed by

the effect of convex curvature. Since the shear stress measurements are

in error; therefore; the energy production calculations are only qualita-

tively correct.

3.3 Constant Pressure Flow along Concave Wall

The z direction traverse at Station i serves two purposes. First;

it serves to indicate the kind of disturbances created by the presence of
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the traversing device in the tunnel, and second_ it serves to provide

a basis for comparison with subsequent traverses in the concave test

section. S_ice the flow in the stl_ight section is sho_ to be two-

dimensional (see discussion in Section 2.3.1)_ the velocity inside the

boundary layer and at a fi_ed distance away from the wall should be

constant for all z planes. Therefore, if the traversing device

(Figure 21) is set up properly inside the tunnel_ the hot-wire would

give a straight line on the X-Y plotter for the z direction traverse

at Station !. Indeed_ this _as the case, and the result of five different

traverses at y = 0.2_ 0.4_ 0.6, 0.8 and 1.0 inches from the wall is

shown in Figure 63. This substantiates the previous claim that the flow

is two-dimensional in the straight section, and that the disturbances

created by the presence of the traversing device do not disturbe the

nature of the flow. However_ it does increase the local flow velocity

because of the blockage effect it has on the flow. To estimate the

amount of increase_ the traversing device was set at two different positions

at Station i such that the hot-wire was 0.2 and I inches away from the

wall. The hot-wire was then moved down to the tunnel center line plane

and the mean velocities at these two y positions were measured. Compar-

isons with the velocity profile measured in the same location show that

the velocity increase varies from 1% to less than 5% of the free stream

velocity_ and that the increase is greater in the free stream than near

the wall. The velocity increase is due to the relatively large cross-

section of the strut (aerofoil shape with maximum thickness of 1/2 inches

and a chord of 2 1/2 inches) in a tunnel of 6 inches wide. Due to the

peculiar design of this traversing device_ it is not possible to make a

quantitative study of the increase in velocity across the boundary layer.

As a result, all traverses obtained in the z direction can only be

interpreted qualitat ively.

The X-Y plotter trace of the z direction traverses at x = 70

and 96 inches are shown in Figures 64 and 65 respectively. Again, traverses
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were taken at y = 0.2, 0.4, O.6_ 0.8 and 1.0 inches respectively.

All five traces were plotted on the samegraph. Comparedto the traces

obtained at Station I (Figure 63)_ the results given in Fig_res 64 and

65 clearly indicate that there is si_uii'icant velocity variations in

the z direction. Thesevelocity variations can be explained by

assuming the existence of a systemof longitudinal vortices similar to

the Taylor-Gortler type vortices inside the boundary layer. Then the

positions of the high points (crests) in the trace could be taken to

correspond to the positions betweentwo vortices whoseflow directions

are directed towards the wall, and the positions of the low points (trough)

could be taken to correspond to the positions between two vortices whoso

flow directions are directed awayfrom the wall (see Figure 66). In the

positions of the crests_ faster moving fluid elementsare being entrained

into the boundary layer by the vortiees_ and as a result of the turbulent

mixing process inside the boundary layer_ the meanvelocity becomeshigher.

Onthe other handj in the positions of the troughs_ the vortices sweepup

slower moving fluid elements from the wall_ and through mixing_ the mean

velocity becomessmaller. Thus, the "wave like" shapeof the trace in the

z direction.

The data also showthat there are more than one pair of vortices

inside the boundary layer. For the 21 inches traversed in the central

core of the tunnel, there are about lO pairs of vortices at x = 70 inches

and 7 pairs at x = 96 inches. This indicates that the vortices spread

in the z direction and somevortex pairs end at the end walls of the

tunnel as the flow movesdownstream. The meanhalf wavelength at x = 70

inches is approx_ately 0.57 inches_ and it is about 0.9 inches at x = 96

inches. In addition_ it canbe inferred that the positions of the crest

and trough are quite stationary_ and that they remain at the same z

position across the boundarylayer. These results substantiate Tani's (1962)

findings that a systemof Taylor-Gortler type vortices does occur in

turbulent boundarylayers over concavesurfaces, and that the wave
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amplitude does decrease as the radius of curvature increases.

It should be pointed out that the above data only manage to show

the presence of the vortices up to y = 1.O inch. No traverses were made

above y = 1.0 inch at both x = 70 and 96 inches. This is most unfortunate

because the n_ximum y position is limited by the width of the curved

test section and the relatively large size of the traversing device. The

traversing device is located outside the boundary layer for all the traverses

at x = 70 inches, and partly inside the boundary layer at x = 96 inches.

However_ since the hot-wire is 2.75 inches away from the strut, the

disturbances created by the strut will not be felt at the hot-wire 3 except

that the flow between the strut and the wall will be slightly accelerated.

This is certainly true at Station 1j and it is assumed to be true also

at x = 70 and 96 inches respectively.

Since the mean output of the hot-wire only gives th_ normal com-

ponent of the resultant velocity, and the flow direction inside the

boundary layer is not known, it is not possible to construct a quantitative

diagram of the vortex structure inside the boundary layer from the traces

shown in Figure 64 and 65. As a result, only a qualitative diagram is

given in Figure 66. The appearance of two layers of vortices at x = 96

inches will be explained later. From this simple-minded diagram_ the z

locations of the points of measurements can be determined. For Station l,

the measurements were taken at tunnel center line 3 i.e. z = 0 3 while

for x = 70 and 96 inches, measurements were taken at the position of

the crest and trough of the wave system. The reason for this is obvious.

Assuming the presence of the vortex system, there is a minimum of cross

flow at the positions of the crest and trough. Those positions that are

nearest to the tunnel center line and lie above it are chosen to be

the points of measurements, because at these locations, the variation

of the positions of the crest and trough is a minimum across the boundary

layer. The locations of the trough and crest are labelled Stations 2

and 3, 4 and 5 at x = 70 and 96 inches respectively. The distance
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betweenStations 2 and 3 is 0.672 inches and betweenStations 4 and 5

is 1.092 inches. The x _nd z coordinates of the measurin_ stations

are given in Flexure 6.

The velocity profiles r_asu_d at Stations 2; 3; 4 and 5 are plotted

in Fig_re 67. Since the cross-flow is a mLui_mml at these locations the

measured velocities are not corrected for cross-flow. Instead W is

assumed to be zero at these locations. The measured velocities are not

corrected for V ; which can be significantly greater than the cor_x_sponding

flat plate flow. However; the results show that _/R varies between .07

and .18, and since V/U can be at most of the order of (L/U)(_U_x),

therefore; the maximum resultant velocity Q __ 1.0181] . In this sense;

the measured profiles can be considered as profiles of U •

From the measured profiles; it can be seen that the boundary layer

is thicker at the position of the trough than at the position of the

crest; and the growth rate at these two positions is approx_nately the

same. The thicker boundary layer at the trough can be explained as

follows. Concave curvature enhances mixing; so when a fluid particle

is displaced from a position nearer the wall to a position further away

from the wall; it will tend to move even further out under the action

of the centrifugal force. At the position of the trough; the particle

is pushed even further out by the vortex motion; and as a result; the

boundary layer becomes thicker. At the position of the crest; the

vortex motion acts in the opposite direction to that of the centrifugal

force; thus the boundary layer becomes thinner compared to that at the

trough. The results also show thzt the boundary layer tl_ick_ess at the

position of the trough is about twice that at the position of the crest.

To find out whether the Law of the Wall also holds for flow over

concave surfaces; the velocity profiles are plotted in the Clauser form.

The values of Upw were obtained by extrapolating the mea_mred profiles

to y = O . This is because no wall static pressure measurements were

rode at the positions of the crest and trough. A sample plot of the
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velocity profiles at Stations 2 and 3 in the Clauser form is given in

Figure 68. The plot shows the existence of a log region near the wall,

but no Clauser lines match the data. The Clauser lines match the data

points in the viscous region. }Iowever_ this should not be taken as

given the Cf at th<se locations. Therefore, the conclusion can be drawn

that the Law of the Wall does not hold for flow along concave surfaces.

As a result, the skin friction at the _ii cannot be determined.

Since convex curvature suppresses mixing_ therefore, concave curva-

ture should enhance mixing. The result of this would be a significant

increase in the fluctuation velocities inside the boundary layer.

Evidence to this fact is given by the turbulence measurements at Stations

i to 5. The results are shown in Figures 69 to 72. In analysing these

results, one point should be noted_ and this is the effect of the adverse

pressure gradient on the flow at the entrance to the curved section.

Bradshaw and Ferriss (1965) showed that in a relaxing boundary layer,

the turbulence intensities decrease as the pressure gradient is removed.

Also, in passing from a zero pressure gradient region into an adverse

pressure gradient region_ the turbulence intensities increase significantly.

For the present case_ if the concave curvature has no effect on the flow,

then the turbulence intensities should increase from x = 24 inches to x =

70 inches and decrease si_aificantly from x = 70 inches to x = 96

inches. The distribution of Y/U_ does show a decrease in the region

near the wall from x : 70 inches to 96 inches; but remains relatively

constant in the outer part of the boundary layer (Figures 69). This is

consistent with the findings of the convex wall, i.e. wall curvature has

very little effect in the region near the wall. However, the same trend

is not noted in the distribution of _/U_ and _2 (Figures 70 and__ A__PW

71). There is no discernable decrease in _ and w 2 distribution

across the boundary layer from x = 70 to 96 inches.

According to the v2 component of the turbulence energy equation

(E-2), concave curvature promotes v2 production, and this is evident
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-_ 2
from t]x distributio_ of v_/U_]w (Figure 70). However, rot all of
the inc_ase over thr_t :::ca_:ure_]at Station i is due to the influence

of conc%vc, cu_,_ature. Part of the increase is due to the adverse

prcssur,. _r_dicnt effect at the entrance to the curved section, and

past of the increase is due to the effect of the vorte>: system. At

St_.tions 2 and Ii_ the vortices l_ve a _'sult_t motiou in the y_

plane directed away from the wall. This contributes furt!pr to the

outward radial movement of the fluid particles. At Stations 3 and 5_

the vortices have a resultant motion in the yz plane directed towards

the wall_ thus any radial movement of fluid particles outw_rd would

be hindered by the vortices. As a result_ the v2 at Stations 2 and 4

are greater than at Stations 3 and 5 respectively. This is particufarly

true at x = 96 inches. The reason is that there may be more than one

layer of vortices at x = 96 inches. This point will be discussed again

The same is true of the wf/U2w distribution (Figure 71). In
later.

other words, the system of longitudinal vortices contribute to the

production of v2 and w 2 fluctuations, but not u 2 This is evident

from the fact that near the wallj u 2 drops from x = 70 to 96 inches,

but not v 2 and w 2 . As a result of this; the distribution of turbu-

2 2
lence energy % _pw does not change si_aificantly from x = 70 to 96

inches (Figure 72). Note that the turbulence energy distribution is

greater at Stations 2 and 4 tham at Stations 3 and 5. This is especially

true at x = 96 inches.

The shear stress profiles at x = 70 inches are given in Figure 73_

while those at x = 96 inches are shown in Figure 74. The shear stress

profile at Station i is also sheba for purpose of comi_rison. The fact

that the shear stress profiles at x = 70 inches show a maxim_ :is due

to the adv_rse pressure gradient effect at the entrance to the curved

section. _he r_x_:ram remains even at x = 96 inches. T_is indicates

the influence concave curv_ature has on the mixing process. However,

the she_r st_'ss p_ofi!es at x = 96 inches show two _oints of _.ximum.
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This could be due to the fact that there is more than one layer of

longitudinal vortices at x = 96 inches. Turbulence intensity measure-

ments also seem to lend evidence to such a postulate. ]Iowever_ the

strongest evidence comes from the profiles of u_--7 and _ at x = 70

and 96 inches (Figures 75 and 76). Measurements of u--w and _ at

Stations 2 and 3 show that there is only one maximum (Figure 76)_ while

the measurements at Stations 4 and 5 distinctly show two maximum points

for both uw and vw . It can be postulated that at x = 70 inches_

there is only one layer of longitudinal vortices 3 while at x = 96 inches s

there are two layers. This is depicted in Figure 66. Also shown are

the velocity traverse at a constant distance away from the wall and

the boundary layer thickness distribution in the z direction. Of

course_ within each bigger vortex s there are smaller vortices_ but these

are not shown.

From previous discussion s the directions of rotation of the vortices

at x = 70 inches can be postulated to be as shown in Figure 66. Based

on the same evidence_ the directions of rotation of the first layer of

vortices (the layer nearer to the wall) at x = 96 inches are assumed to

be the same as that at x = 70 inches. The directions of rotation of

the second layer of vortices can be postulated after an examination of

Figures 75 and 76. At Station 2, the distribution of u-w is positive

across the boundary layer s while that of _ is negative (Figure 75).

At Station 4 s the distribution of u--_ is also positive across the

whole boundary layer, while that of vw is also negative (Figure 76).

This seems to indicate that the second layer of longitudinal vortices

would also have the same direction of rotation as the first layer.

At Station 3 , the u--w distribution is negative s and the

distribution is positive. The same is true at Station 5 • This

again lends evidence to support the postulate that the directions of

rotation of the second layer of vortices at x = 96 inches are the same

as the first layer. The fact that there are two layers of vortices at

62



x = !}6 J_".ch<,_: is w_r.," clear from Fi_ure "[6. Itowever_ the vortex structure

at x = b'o inch_s in _ot stable. Thereforc_ further downstrcam_ it may

revert b:_ck to that of a ninclc layer structure.

The dietributicnc_ of u_--7 and w.--7 at Stations 4 and 5 all show

the existence of two _:aves with the waves going to zero at the _,_11_ at

y/5 _ .6 and at the cdse of the boundary layer. Based on all these

evidencesj the resultant vortex structure as sho_n_ in Figure 66 is

postulated for the, boun(½r_ _ layer flm._ at x = 70 and 96 inches

re si_cti_ely.

Finally the shear correlation coefficient _ud the turbulent energy

production arc calculated and plotted in Figures 77 and 78. As expected,

the shear correlation coefficient does not re_in constant across the

boundary layer. This is due to the effect of the longitud_lal concave

curvature which gives rise to the Taylor-Gortler t_e vortices. As to

the peculiar behaviour of the turbulent energy production at x = 96

inches_ this is probably due to the peculiar velocity profiles at Stations

4 and 5.
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Chapter IV

TI[EOP_ETICALPREDICTIONSOF

CURVEDk_uffl]3UI,EiYfBOUIYDARYL%YglgS

4.i Introduction

The ulti_,_te goal in boundary layer research is the understanding

of the physics of such flow and at the same time to be able to develope

a procedure for p_edicting_ both _uantitatively arid easilyj the practical

features (e.g. H_ Cf _ and the shear stress) of boundary layers. In

the past_ investigators have been _uite successful in the development

of prediction methods for two-dimensional boundary layers. In these

calculation methods_ be they based on integral or differential e_uations_

it has been assumed that the static pressure variation across the layer_

due to either rapid boundary layer growth_ flow injection at the surface_

surface curvature (when I_/R 1 << i) has very little effect on the
or

flow and hence can be neglected. Such an assumption neglects the effects

of the curvature of the mean flow streamlines. These effects are shown

to have a considerable influpnce on the mixing process in the flow.

Convex curvature in the mean flow streamlines reduces the mixing between

the fluid layers and this leads to an early cut off of the shear stress

(see Fig. 59). In contrastj concave curwature enhances the mixing pro-

cess_ and the shear stress profile remains quite full until the edge of

the boundary layer where it drops to zero steeply (see Figs. 73 and 74).

Thompson (1963) _as the first author to point out the importance

of incorporating a curvature parameter in calculation methods. In a

critical review of existing two-dimensional calculation methods_ he found

that the small curvature that existed on most of the test surface where

measurements were _de_ was not large enough to cause substantial

difference between the measured velocity profiles and that calculated

assuming the flow to be two-dimensional plane flow. However_ there w_s

a consistent difference between the measured and calculated shape factor
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development in the streamwiso direction. A well-known case _s the

measurements on an aerofoil by Sehubauer and Klebanoff (1o51) . In

their r:ma_urements, the cur_ture parameter _/R , as defined by

Thompson, was _ i/i_0 do_..,nst_am of _}_ pressure minimum. Most pre-

dictions methods gave fairly _ood correlation for the velocity profiles

and the momentum thicP_ess; but all predicted the shape factor too low.

ThomlJson argued that the effect of curvature _T&s on the entrainment

process. He modified ]{ead's entrairm_ent function by the inclusion of

an empirical factor which was assumed to be a simple function of

the curvature parameter S/R This improved the agreement between the

experimentally measured H and that predicted by his calculation

method. Although the method used by Thompson was not very satisfactory;

his results brought to light the very important conclusion_ namely that

the primary influence of the streamline curvature was on the mechanism

of the turbulent motion and the entrainment of free stream fluid into

the layer. Therefore, any attempt to extend existing two-dimensional

calculation methods to include curmature effects should be directed to

the modification of some _mrameter; e.g. Head's entrainment function

or eddy viscosity, that will take the physics of the flow into account.

More recently, Bradshaw (1968) has dra_m the analogy between the

Richardson Number, which is a meteorological parameter; and a curved

flow parameter "L" which describes the effect of streamline curvature on

turbulent flow. Using this analogy to apply meteorological data to curved

turbulent flows, Bradshaw showed that the apparent mixing length was

affected appreciably even though b_ _ 1/300 • Incorporating this

modified mixing length into the Bradshaw; Ferris and Atwell calculation

method, Bradshaw managed to obtain better agrec_nent between H , 5* and

Cf as measured by Schubauer and Klebanoff (1951) and that predicted by

his calculations. Again; this points to the need to modify the eddy

viscosity or mixing length function, such that the resultant form will

be general enough to predict both curve and plane turbulent flows
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accurately.

IIence_ the object of the present chapter is to seek a set of self

consistent turbulent boundary la_r equations for flows along curved

surfaces_ and the corresponding momentum integral. This is done in

Section 2 and Appendiy_ D.

In Section 3 a modifie6 eddy viscosity function which consists of

the product of the flat plate eddy viscosity and a factor that is a

simple function of the curvature parameter is derived. This modified

eddy viscosity approaches the eddy viscosity function put forward by

Mellor s_ud Gibson (1966) as the surface curvature becomes zero. A

technique similar to that proposed by Mellor and Herring (1970) is

adopted for the derivation of the modified eddy viscosity function.

Assumptions are made to simplify the turbulence energy equations of

2 2 2
u , v , w and u-v for curved turbulent flows (for derivation of

these equations see Appendix E) so that all terms in these equations_

including the pressure-velocity correlations and the triple velocity

correlations terms_ can be expressed in terms of the double velocity

correlations. These equations are further simplified by assuming the

advection and diffusion terms to be small compared to the dissipation

and production tenns_ and hence can be neglected. This is equivalent

to assuming that energy production balances dissipation and that a state

of equilibrium is reached as far as the energy distribution is concerned.

This is a plausible assumption because existing flat plate (Klebanoff 1955)

and pipe flow (Laufer 1954) data do indicate such a state of equilibrium

for the flow near the wall. The resultant equations are algebraic and

can easily be solved for the shear stress.

In relating the various terms _ the turbulence energy equations

to u.u _ four length scales are introduced as proportionality constants.
i j

Therefore_ in order that the shear stress be specified completely by

mean flow quantities only_ empirical _taue_ents for these length scales

should be derived. Mellor and Herring (1970) _ve sho_cn that the four
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length scales are not tn_ly independent and from cxp,_'rim,_'ntalcorrelation

two relations can be found for th__ four length scales. This leaves

tvo lensth scales to be spucific'd. If the eddy viscosity function for

curved turbulent flow as derived in Section 3 is truly a general one;

then the length scales appsarJ_oS in the expression should be independent

of curm:turc rzudpressure gradient. Hence_it is sufficient to obtain

empirical statements for the length scales by only considering the plane

flow tuz-bulenceenergy equation and the Lawof the Wall. This is done

in Section I_.

The boundary layer equations together with the eddy viscosity

function are then solved using a finite difference method adopted by

Herring and Mellor (1970). Reduction of the set of equations to an

ordinary differential equation is given in Section 5. The calculations

are then compared with the measurements on both the convex and concave

surfaces. Finally_ a brief discussion of the calculation method and

the comparisons are given in Section 6.

4.2 Boundary layer Equations for Curved Flow and the Momentum Integra]

The Navier-Stokes equations for a constant density incomp_:ssible

flow can be written as:

V'_ = 0 (4.2-1)

b_ _ - 1 2_
;_-._-+ q'Vq = -pVP + v? q (4.2-2)

Consider a flow over a two dimensional curved surface. Use general

orthogonal coordinates with x measured along the surface; y nor_l

to the surface and z at right angles to the x-y plane which is the

plane of the motion. If k(x) = i/R(x ) is the curvature of the surface,

(k is taken to be positive for convex curvature; and negative for con-

cave curvature) the elements of length along the pzrallel curves and along

the nomr, al are h I = I + ky and h 2 = i . The element of length along
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the z direction is h3 : i . Taking u , v ; and w to be the

velocity components along the x ; y and z directions respectively,

and working out the components of the vector equation of motion (see

Owczarck 1964); the following equations for u , v and w are obtained:

5u i _u _u _u k
-- UV

_T _ _T
i bp i xx xy xz

= - l+ky bx + l+ky bx + by + 8z

2k (4.2-3)+ T
l+ky xy

bv i by _v by k 2

b-7 + 1+kyUg-lx+ vgjy + w_z l+kyU

bT bT bT
b p I xy yy yz

= - _y + l+ky bx + by + _z

k

- Z+k---7(T_ - Tyy) (4.2-4)

bw i bw bw _w bp

_-7 + Z+kyUgTx + v_ + wbz bz

whe re

_T 5T bT
i xz yz zz k

+ l+ky _x + by + 5z + l+k---7Tyz (4.2-5)

= 2v(l_l+k buTxx y _x

T = 2v b_._v
yy By

b_j

= 2v
Tzz b z

k
+ _ V)

l+ky
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_LP{ " L,"_C \,'J SCO]tL: _OZ_*.ID,_ D+NOF, SC'S [t,2qd

%<. = _,{(2 +b ,)SJ(_) +

{Su 1 8w.T = V -- J,

are tb' sLea:Pin C stros;u :'. It should be' pointer] out thmt the pressure

p and the stresses T.. have the dimension of velocity s:iuare in these
1O

equations. The conti_ruity equation can be written

--+ {(l,1_y)v)+ -- {(J_+k,jp] : o (4.2-6)

Consider a turbulent flow that is two dimensional in the mean.

Thereforc_ the mean flow in the z direction is sere; and all _z of

mean flow quantities vanish. The field equations of motion for such a

flow when decomposed into ensemble mean velocities U ; V plus fluctuating

velocities u _ v j w and their concomitant pressure P and p are:

88u + {(2+ky)v]: 0 (_.2-7)

w

8U i 8U 8U k 1 8P 1

87 + 2+]'_--7u _ + v _ + l+kTuv : l-_-I:y8x + 2+ky8):(-u%_Tx×)

8 _ 2k

+ _ (-u_ + _xy) + _ (-uv, _, ) (4.2-8)

I 8v 8v k 2 8P
8V + _U + V U : - _ +
aT l+ky _xx 8 y l+ky 8 y 1 8 _v2+Tyy )l+ky 8x ( -_--_+ Txy) + _y

k 2 2

- _+k--TI:(-_ + _x_) - {-v , Tyy)} (4.2-9)

8u 8 8 [(z+ky)w} : o
aT +_ {(l+ky)_} + (4.2-lo)



bu
+

bt

1 b 2

l+ky O x (2uU + u

b
U2)" + _,_ (VU + uV + uv - u-_)

b 2k

+_(_,_+uw-_) +l+ky (vu + uV +uv - U_)

I _2 z bT bT bTx.x xy 2k xz

l+ky _x + l+ky bx +_T -+ l+k---_xy + 87-- (4.2-I1)

bv 1 b b 2 y)_-_+l+kyb×(_u+uV+uv-_V) +_(2vV+v -

b k

+ y_z(wv+ _ - W)
i+ky

= _8-!P+ 1 8Txz 8"cms
by l+ky _x + by

. 2 2 2 2,
- _ (2uU-2vV_u -v -u +v )

8T

l+ky (_ - _yy) + y____zxx bz (4.2-12)

bY
+

8t
1 b b

+ uw-_)+_(w+___)l+ky bx

w-_-) k bpb (w 2 + _ (WV + vw - _) = - --
+ Uz - l+ky 81

I _T _T bT

xz yz k z___z (4.2-13)l+kybx +_7 -+z+k--7_yz+_z

The Tij are the fluctuating viscous stresses given by the same

expressions as Tij except that all velocities in Tij are now replaced

by the fluctuating velocities.

The only component of vorticity that is non-zero is that normal to

the x-y plane and is given by:

l by _u k
= l+ky bx by l+ky U (4.2-14)
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With the field equations oC motions given by equations (4.2-'{) to

(4.2-9) _nd the vorticity dcfin_d by equation (4.2-]4), t]_e next step

is to s_nplify these equations to obtain a set of so]f-consistent bouncl_-j

layer ecluations for a turbulent I'lo_ that is two-d_nensional in ti_0 mean

along a curved surface. The assumptions to be T_de are t_mt the bouncl'_

layer thickness 5 is very small compared to the x dimension and the

radius of curvature R of the surface is of the same order as the x

dimension. Therefore_ $/R is very much s_mller than I . The geometry

of the surface is specified by R(x). The function R(x) has to be

smooth but other_ise it can be a general one.

Recently_ }4ellor 41970) has demonstrated t_t the method of matched

asymptotic expansion can also be applied to turbulent boundary layers.

2^

Two small parameters_ c= ut_ o and 6 e = V/Uo_ , (where u t is any

characteristic turbulent vclocity_ Uo is any characteristic free stream

velocity and _ is a c]i&racteristic length) appear as a result of

making the equations non-dimensional with respect to u t _ Uo and

However_ Hellor (1970) _s si_own that expansion in one parameter_ e 3 is

sufficient an<i that (SA n) _ 0 as _ _ 0 for arbitrary n . Unlike

the case of laminar boundary layers_ three layers exist_ Can outer

layer_ a middle layer and an ihuner layer) due to the presence of the

two small parameters. Also_ the L_w of the Wall is shown to be a con-

sequence of the matching between the inner and the middle /_yers. In

view of this_ the set of boundary layer equations for a curved flow is

obtained through the method of matched asymptotic expansion instead of

through dimensional argument. This is carried out in Appendix D for

equations (4.2-7) to 44.2-9) and equation (4.2-14). The resultant

set of equations in dimensional form is given by equations (D-22) to

(D-25) and equation (D-26), which is

__/u _v
_x + _ + kv = 0 (_.2-15)
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8U 8U i _P .8____ T%-£+ v_ + kuv-- _8_+8y_)+ 2k-p (4.2-_6)

2 18P

p Po_

8U

: - aT - ku (4.2-18)

p_ - _e (sTau - ku) (4.2-29)

where U is the potential velocity which is, as yet; undefined.
P

The inner boundary condition is given by the no slip condition.

The outer boundary condition can be defined so that the velocity

approaches the free stream velocity as y _ _ The free stream velocity

is obtained from the Bernoulli equation and the condition of zero

vorticity. This iI_nediately gives the free stream velocity distribution

as.

Up(X,y):u (_)e-kY (4.2-20)

where Up(X,y) is the potential velocity and Upw(X ) is the potential

velocity at the surface.

It should be noted that, insert_g (4.2-_) _to (4.2-19) shows

that T/p does not vanish as y _ _ if w is maintained consent.
e

On the other hand; the terms 8 T) + 2k _ 0 as y _ _ This

circumstance is identical to that obta_ed in lar_nar flow. This is

pointed out because, later on; an eddy viscosity model where v does
e

stay constant for large y is assumed. This is, Of course, not

partic_tlarly realistic but it is known that predicted velocity profiles

are insensitive to the detailed behavior of w at large y .
e

E_uation (4.2-17) must be used together with the other approximations

1 8P 2
of the boundary layer equations (see Appendix D). If - _ : k U is

P 8y

used instead, the pressure term _ill not balance the advective terms

in equation (4.2-16) when it is integrated over the whole layer. Thus,
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inte([_mting equation (4.2-17) and then differentiate the resultant

expression with respect to x it can be sho_,¢n t_mt

z bP _ b 2 -2k:y,)
p 8x - - _xx {ut_,J e (4.2-2z)

Substitute P _x into equation (4.2-16) and then integrate from 0

_ the momentum inte6z_l_ thus obtained_ can be written as follows:

to

dU
1 dO _ pw dk _ U

cf:_+(t{+2) u _ _.r oy(1-_-lay
pw p

dk U (i U-_ 2yu-. -0-) dy
P P

(4.2-22)

-x-

where Cf,., [ and 0 are defined as:

T_.T

(4.2-23)cr - _ 2
2PU

_w"

-x- U

6 : < (1 -0-'- ) dy (4.2-24)
P

_U (i U
0 : I ° 0-- - 7 -) _y (4.2-25)

p P

The integration is somewhzt complicated. It is helpful to first rewrite

the shear stress tenths in equ_'_tJon (4.2-16) as p-1 e-2ky _(e2kyT)_y and

then set U : e -by u(x,y) where k : k(x) and u _ Upw as y _ oo .

Solving the continuity equation gives

-ky _u dk

v = e [- I ° _ _y + _ I ° y _ ay]

Substituting the above U_ V terms and equation (4.2-21) into e%uation

(4.2-16) the intecration _m_y be performed and the result cleared of

exponential functions. Finally, noting that u = Upw (U/Up), the

result can be written in the form of equation (4.2-22).



Note t}_at the two integrals in eqs_ation(4.2-22) are finite since U/Up_ 1
at the edye of th_ boundary layer. If i _P _ kUo had beenused instead

0 Sy
of eq_ation (4.2-17)_ a term would be ]_troduced which would blow up

as the limit of Lntegration approachedinfinity.

The set of (4.2-zy)

together with the eddy viscosity _ to be derived in Section 3 form
e

a closed set_ and can be solved when the appropriate _itia] and boundary

conditions are specified. The boundary conditions are given by:

u(x,o) = : o (4.e-26)

at the wall_ and

-ky

U(x,y) = Up(X,y) = Upw(X)e (4.2-27)

at the edge of the boundary layer. To solve this set of equations, the

method of Herring and Hellor (1970) is used. The reduction of these

equations to a single ordinary differential equation is given in Section 5.

4.3 The Eddy Viscosity }$9othesis

As pointed out by Hellor and IIerring_ an expression for the shear

stress (-u-g) can be obtained from the tu_'bulence energy equations when

further assumptions arc made to simplify the equations to a set of algebraic

equations. Invoking the assumptions that in the region near a _all_ the

advection and diffusion of turbulence energy are very much s_ller than

the production and dissap3.tion of turbulence energy_ the advcction and

diffusion terms in ecluations (E-14) to (E-17)_ as de±ived in Appendix E,

can be neglected. The result is

1 q. (-u 2 1 2_) 2 a 3 )U.... --_ + 2 _7 :-- H 2k _V U : 0 (4.3-i)
3 _1 3" q + 3 A 0y

_ _ l q2 2 q31 ci (v - - ) + - - - 4k _ U = 0 (4.3-2)
3_ 3 3A

i
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I q (w 2 I 2 q3
3 _i - _ q2) + 3 A - 0 (4.3-3)

-_U k(2 J - v2)U : 0 (4.3-4)

3 _i

where A and _i are length scale as defined in equation (E-6) and (E-7)

respectively.

The equations are correct to order _ because of the inclusion of

the curvature terms. Since the objective of the present Section is to

find an eddy viscosity function that includes curvature, this purpose

will not be served if the curvature terms in the turbulence energy

equations are excluded.

Omitting all the algebra, the result of solving equations (4.3-1)

to (4.3-4) for (-u-_) is

6_i 3/2 {(-u-@) : (_iAi/3)3/2(1 - -_-) 1

ku ) ku 3/2

ku }2
C1 _U_y

kU )2(c)U)2

(4.3-5)

It should be noted that in deriving this expression for (-u-_), isotropy

is not assumed. If isotropy is assumed, the same expression will still

be obtained_ except that the factor (1 - 6_I/A) 3/2 becomes i In

this casej when curvaturc is ass_ed zero, the expression.

_
(-_v) : (_lA ) I_1_

is obtained. Immediately, it can be recognized that the eddy viscosity

can be identified _ith the expression (_IAI/3) 3/2 _U Similarly, one

(_IAI/3) 3/2 3/2 _U _Y "
can identify (l - 6_/A) _y as the eddy viscosity in a
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plane flow when isotropy is not assumed. Denoting the latter expression

by veF and after some rearrangement, equation (4.3-5) can be written

as

(
(-{_--g) : veF _l -!

au + kU)kU-[3/2

]_u _ kU)2
(4.3-6)

I

kU I( au - kU)
i - _-'O--A-iY_l

where

The shear stress is given by equation (4.2-19)

="e(_ -k_)
oy

where
e

equation ( 4.2-19 )

v is the eddy viscosity. Comparing equation (4.3-6) with

v
e

v can be written
e

= veF {i -

3/2

(4.3-7)

This then is the desired eddy viscosity function. Note that for

convex curvature k is positive, and the modifying factor within the

curly brackets is always smaller than i , except at the wall. Hence,

the physics of convexly curved flow, which in simple terms can be

characterized by the decreased mixing, is embedded in the eddy viscosity

function. For flow over concave surfaces, the present investigation has

demonstrated that a system of longitudinal vortices exists inside the

boundary layer. As a result, the flow is no longer two-dimensional,

and the present approach to characterize the flow by a scalar eddy
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viscosity function is in doubt. ]Iowever_ the eddy viscosity function

as given in equation (k.3-7) affords the practical engineer a simple

approach to estimate, though approximately_ the various features of

the turbulent boundary layer on a concave surface. This would involve

some kind of assumptions about the flow or the prediction method (This

will be discussed in detail in Section 4.2-6). For the present_ it is

enough just to point out the limitation of the eddy viscosity function.

it remains to define _ which involves the ratio (_I/A), and thisNow_

is given in the next section.

4.4 Determination of (_I/A)

The eddy viscosity for a turbulent flow along any smooth curved

surface is completely defined by equation (4.3-5). Theoretically_ v
e

can be computed once the variation of _i and A across the boundary

layer is known. This requires emperical statements for _i and A very

near the wall_ which at present cannot be obtained with certainty due to

the lack of reliable turbulence data in this region. Since the present

objective is to find a modifying function that includes curvature for

the flat plate eddy viscosity_ it suffices to identify

3/2 _i 3/2 I_UI

with the eddy viscosity hypothesis put forward by Mellor and Gibson (1966).

Therefore; only the ratio (_l/A) remains to be determined in the expression

for w .
e

From the emperical statements of _i and A given by Mellor and

Herring (1970), it can be seen that (_I/A) is practically constant in the

overlap and defect regions of the boundary layer. Due to the fact that

the flow near the wall is predominantly viscous in nature_ the curvature_

according to Van Dyke (1962); is a second order effect in this region.

Hence, it is sufficient only to determine the ratio (_I/A) in the outer
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part of the boundary layer_ and this can be obtained_ most conveniently,

by considering the Law of the Wall region only.

Near the wall, Mellor and }lerring (1970) assu_e that

_l = fn (y, q, v)

or

_lq qy

-- = ¢_i,, (x) ; ×- ,,

S imilarly

As yet, the functions ¢_I(X) and CA(X) are undefined. For the Law

of the Wall region_ it is further assumed that these functions can be

approximated by a power law namely

_lq n

- A (_) (_._-l)

m

Aq_ = B (_) (4.4-2)

where A and B are constants and n and m are integers to be

determined.

The eddy viscosity function should be applicable to both curved

and plane flows with arbitrary pressure distribution. Therefore_ it is

necessary only to determine _i and A for the flow along a fiat plate.

The turbulence energy equations for _ , _ , _ and u-V , neglecting

the diffusion and advection terms are:

- 2 cl3 _U =o (4.4-3)
-: 3^
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i q (v-_ i q2 2 q3

-- _ 2 q_3i_q (2 _q2) + -o (4.4-5)
3£ 1 3 3A

In this region, the law of the Wall also hold and

_U u
- (4.4-7)

_y Ky

2 Tw

where u - P is the friction velocity and g is the yon Karman

constant. Making the velocities non-d_mnsional with respect to u
T

and _ith the substitution of equations (4.4-1), (4.4-2) and (4.4-7),

equations (4.4-3) to (4.4-6) can be written as

-m +4

u_.___-n +2 +2 i q+2) 2u _w qA ( ) _--(u -- +--( )v 3 B v

_ 6(__ii-v+)
Ky

- 0

(4._-8)

+2 2u_ -m +4
u qy)-n q___ (v+2 i +2 qY) qT(7 - _ -_q )+--(B _ --=_ o (4.4-9)

(_..%.y.y)-n +2 -- 211 -m q+4__ q___ (w+2 _ i_ q+2) + _ (q,Y) - 0 (4,4-10)
A v v 3 B v v

-n q+2 -'72 1
u (_) --(-_-_) +3_ -- = o (4.4-zz)A w Ky

where
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N

2 2
-+2 u +2 v
U = _ V -

2 ' u2

2
+2 q __+ uv

q : _ , uv = --
u.[ u_

+2
W

2
_g

It is further assumed that the shear stress is constant, i.e. (-_V +) = i,

in the Law of the Wall region, and the function ¢_I and CA are universal_

hence, w¢£i and w_A are independent of viscosity. This necessary

implies that n = m = i With these simplifications, equations (4.4-8)

to (4.4-11) reduce to:

Bq+ (u-$2 _ 1 q+2) + 2Aq+3 _ 6 AB : 0
3 K

(4.4-12)

w

i +2 2Aq+2
B(v +2 - _ q ) + = 0 (4.4-13)

B(w+2 . _iq+2) + 2Aq+2 = 0
3

m

+2
+ 3Av

- q (-_V +) + - 0 (4.4-15)
g

Solving these equations give:

+2 +2
2A v + w

B 2q+2

1

+3
B : Kq (4.4-17)

4 A3B A3K : (z - 6
D

A value of _I/A which gives the best agreement in Cf between the

calculated values and the measured values for the case of constant pressure

flow along convex wall is chosen and used for calculations of the other

two cases. However, whatever value one chooses for £1/A , it should
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s.mtisfy ,question (4.4-!,?_.)_ so that the yon Ka_n constant can always

4.5 Reducti<n of t}_¢ <'+,_e_ of Bc_nJary I_y<,r Equmtions to an Ordinary

Difi'erent i;_i]Lq,_atic..u

togcthc±" with boundary condi%ions (4.2-26) and (4.2-_!7) car, be reduced

to an ordinary differential equation through the following substitutions.

Folio}zing Herring and l,t_llor (1970), assume

where

U -U

_ : f'(-":m) - P (4.5-Z)
_71 U

P

At

Differentiate equation (4.5-i) with respect to x and y and integrate

the continuity equation (4.2-15) to obtain V ; it can be shown that

m U_ ' , _f'_U -2ah UpwU_ : e [U ,_ (1-:_)2 2 (j__f)

2 !

Upw {a6* '8"_ t _2+ . - a _,_,:z-_",
5

!
"-X"

2 6 ' "
+u -- (1- f hf ]

pw _*

2

v,gU -2aq ' Upw * '
_ + k_) : _ [u_2__ (n-f)f + -_ _:a_ -a _

!
2 .

" _f UI_w8 , ,,
_ + -- (_- -f)_ ]

2

( - _ + _)f u _ .
5

X

* _ *
whe_ a = k_ and G = ]_ fdq The primes in a , 5

O
and U

(_.5-2)

(_._-_)

refer
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to ordinary differentiation with respect to x .

The pressure term can be obtained by differentiating the integral

of equation (4.2-17). The result is:

2

i _P -2an ' Upw *' '5")_p_ -e [u u +_(a_ -a ]pwpw *
5

44.5-4)

Bearing in mind that i + ky is taken to be i only whenever

it appears as a coefficient and noting that w is a function of q
e

the shear stress terms can be written as

2

-2aq Upw ,,

5-"_- [-ean(¢f )

+ e all a(¢f") - e all a t2¢'+ a¢)(1 - f')]

(4.5-5)

whe re

V
e

¢ -

UpwS*

Substitute equations (4.5-2) to (4.5-5) into equation 44.2-16)

and after some rearrangement_ the following equation for f is obtainedj

namely:

, 5*u'
,I !aw(¢f) :-e'an[(

U
pw

1 2 ,,

(_ -_f + G)_ f

, -a_] 5* ' 8f(f'-2)f + e (1-f) _ + e

! !

,SW-- + 5 )(1J-f) + (aS* - a )

5*u'
!

-an ___- e [ + (aS* -a'SW)q]

pw

!

_f
-an 5*f" _x

44.5-6)

+ a(¢f") - a(2¢'+a¢)(1-f')

This equation (4.5-6) can be further reduced to an ordinary differential
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equation through the use of the identities

f - f
bf i i-I

x Ax

, f'. '
f I - £i-i

bx AX

for the differential with respect to x .

The resultant equation as function at x. can be _itten as
1

I I 11 ! I

. fr-(*f")s - _b + ci(r'_+ fi-z) + c2(r_+ i__)

Y I

+ C3(f i - fi_l ) - C4(f i - fi_l) - C 5 - C 6

(4._-7)

where

I

' = Cf"
_b - ( )S-i

. , , fi+fi_l5U .

-_ _+_ ) (_ _ )+ e-a_C I : e ( U

pw

*' i 2 fi+fi-I Gi+Gi-

(_ -_':)(_-_ 2 + _ i)

_%'
-a_ f pwc2 = e "7--- + _(_* -_'_*)_(

pw

. . w t

-a_ 5 i+Si-I f'+f(l • i-l)
C 3 = e Ax 2

-a_ 5i +_i-I f" +f( • i-l,)
C 4 = e AX 2

fi+fi_l

2
2)

c_ = a [(_f1')i + (_f1')i_l]
I !

fi_l+fi

c6 = 2_ (2,'+a,)(i _ )

(4.5-8)
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The overbar denotes average value and the C. 's are all calculated from
z

the previous iteration. Rearranging the equation further_ the final

equation to be solved can be written as:

!

f,, I! T

(b5 )i = b_ + b3fi + 52f± + blfi (4.5-9)

and

= _
b 5 i

! T! T

: _ csi_l (c2+c3)fi_1b4 Tb + + + C4fi_ 1 - C5+C 6

b 3 = CI
(4.5-io)

b 2 = C 2 - C3

b I = -C4

The boundary conditions at the wall are:

T

f (x,o) : i

f(x,o} = 0

(4.5-11)

and the free stream boundary condition is

The unknown function

it can be written as

f"(a 1-f')

* = CF [I+_ [f,,+2a(l_f,)] 2 )

b 5 is given oy equation 44.3-6).

3/2 Cf"+2a(_-f'}lI

{f"+a(l-f')} l

In terms of f

(4.5-13)



We F

- is the flat plate eddy viscosity function.
whe re _F Upw_ ×

The equations (4.5-9) an.d (4.5-13) together with bound_ry conditions

(4.5-11) o_ud (4.5-12) are solved using as initial conditions the measured

data at Station i of the t_ree experimental cases, namely: (i) constant

pressure flow along convex wall, (2) separating flow along convex wail

and (3) constarlt pressure flow along concave wall. The results are then

compared with the present data. A discussion of this comparison is

given in the next section.

4.6 Comparison with Present Data

The boundary layer program of Herring and Mellor (1968) is used to

numerically integrate the ordinary differential equation (4.5-9) with

the set of boundary conditions (4.5-11) and (4.5-12). The program uses

a fourth order Runge-Kutta technique for the numerical integration.

Although such a teclmique works well for all types of boundary layer

development on a flat surface, it fails to give a solution that converges

to the required accuracy on both f and f' when the surface is curved.

The difficulties occur at the point where curvature begins, and in part

is due to the fact that the shear stress vanishes at about half the

boundary layer thickness at this point. In order to overcome this short-

coming, another integration technique is used. The method is discussed

in Richmeyer and Morton (1964). Essentially, it reduces the ordinary

differential equation to a set of algebraic equations and these are

then solved for f' simultaneously with the boundary conditions.

Instead of shooting out from the wall; the method proceeds inward, thus

eliminating completely the initial guess on f"(x;O) which is required

in the case of the Runge-Kutta technique. The shear stress is then

obtained by differentiating f' numerically. The whole calculation is

repeated until f and f' converge to the required accuracy.

Initially, £1/A : .0136 (obtained by setting q+ = 3) is used.

However, this gives a Cf that is too high compared to the data of constant
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pressure flow along convex wall. Various values of (_I/A) are tried until

one (_I/A) is found such that thc calculated Cf and the measured Cf

for the case of constant pressure flow along convex wall correlate with

each other. Such a value of (_I/A) is found to be .0417 and this is

used for the boundary layer predictions of the other two cases.

4.6.1 Turbulent Boundary Layers along Convex Surfaces

The results for the case of constant pressure flow are given in

Figures 79 to 81. The agreement among the various integral parameters

e , 5 and H are very good (Figure 79). In order to show more

explicitily the curvature effect_ two more calculations are made. One

is without curvature, i.e. R _ _ , while the curvature for the second
o

calculation is halved_ i.e. R = 20 inches. For both calculationsj
o

the same initial condition and the same distribution of potential

velocity at the wall are used. It can be seen that the result of convex

curvature is to reduce e and increase 5 3 hence H is very much

different from the corresponding flow along a flat plate. The calculation

with no curvature shows that H = 1.35 when the flow is in equilibrium

again after passing through the favorable pressure gradient. However_

with the designed curvature (R ° = i0 inches) H still keeps on

increasing and this is an indication that the flow is not in equilibrium

even at x = 75 inches. On the other hand_ with the curvature halved, H

approaches a constant at x = 75 inches. The prediction of Cf is

of course excellent_ since _I/A is chosen so that the calculated and

measured Cf matched each other at x = 71 inches_ i.e. Station ii.

For the corresponding flat plate flow, Cf is about 13_ higher than the

measured Cf • This strongly indicates that turbulent flows along

convex surface cannot support as high an adverse pressure gradient as

the same flow over a flat surface. This fact will again be borne out

in the separating flow case. Calculated velocity profiles at Stations

2, 7, 9 and ii are shown in Figure 80 together with the measured profiles.

_6



In general_ agmoement is good_ and the present method predicts the

velocity profile quite well e_n at Station 2 which lo<:atcs do_struam

of the stron_ favourable pressure gradient. For purpose of clarity_

the velocity profiles from the other two calculations a_ not sho_n.

The present _thod also predicts the shear stress profile very

well (Figure 81)_ especially the point where the shear stress vanishes.

Near the wall_ the agreement is off_ but in this region_ the measurements

are in error because the rotating-wire method is not accurate in region

of high shear as pointed out in Appendix D. Aside from this region

which is about one displacement thickness_ the agreement is very good.

At Station 7_ the shear stress profiles of the zero wall curvature

(R ° _ _)_ and half wall curvature (R ° = 20 in.) are also sho_. This

shows clearly the effect of convex curvature in "cutting off" turbulence.

With no curvature_ the shear stress vanishes at the edge of the boundary

layer (_ __ ii), with R = 20 inches_ the shear stress vanishes at
o

_ 5 , while with R = i0 inches (the designed curvature), the shear
o

stress vanishes at _ __ 4 . Hence it can be seen that even if the

surface has a very small curvature_ the point of zero shear will be

somewhere inside the boundary layer (the boundary layer is assumed to

have been established previously).

In the calculation of the separating flow case_ instead of usir_g

the measured distribution of potential velocity at the wall all the way

up to x = 75 inches_ the extrapolated velocity distribution from x = 62. 5

inches to x = 75 inches is used (Figure 82). This gives a linear

decelerating potential velocity distribution at the wall_ and this is

the desired velocity distribution to be set on the convex surface (see

Section 2.3.2 ) . The results are shown in Figtu_es 83 to 86. As in the

case of constant pressure flow_ two more calculations (one with R -_
o

and the other with R ° = 20 in.) are made for the sake of parametric

study of the curwuture effect. The calculated s_d measured O and 8_

are given in Figure 83. Under the influence of adverse pressure g_dient_
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the differences in the dewlopment of 0 is unnoticeable. The 0

development for the case of R = 20 inches is practically the same
o

as tl'_t of R _ _ , hence not shown on the graph. However, the
o

differences in 5 are discernable, especially near separation.

Although the location of the point of separation is not known,

it can be said with confidence that the flow separates somewhere

between x = 66 inches and x = 69.5 inches. If separation is defined

as the point where Cf _ 0 , then the separation point as calculated by

the present method falls right within the range of x = 66 inches to x =

69.5 inches, and is at x _ 67 inches (Figure 84). With R = 20 inches,
- o

separation occurs at x __ 73 inches, and for zero wall curvature, the

flow does not separate until x __ 80 inches. This supports the previous

conclusion that under the same distribution of potential velocity at

the wall, the flow sepmrates earlier when the surface has a convex

curvatur e.

The calculated Cf agrees well with the measured Cf up to

x = 59 inches, and after this the calculated value is generally lowered.

The reason is that in the actual flow, the inviscid-viscous interaction

causes the velocity distribution to level off, and therefore has a

delaying effect on separation. This is borne out by the fact that if

the measured velocity distribution is used instead of the linear

decelerating velocity distribution, the present method gives good agreement

with Cf up to x = 66 inches. However, separation is predicted to be

at x = 78 inches, and no separation is predicted for the other two

cases. This points out one of the difficulties in trying to predict

near separation flow. Unless a way can be found to account for the

inviscid-visceus interaction near separation, the difficulty remains.

The agreement between calculated and measured velocity profiles at

Stations 4, 7, 9 and ii is excellent (Figure 85). However, the agreement

is poor between calculated and measured shear stress profiles at

Stations 4 and 7 (Figure 86). In spite of the poor agreemcnt, the point
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where _ -* 0 is accurately predicted. Even thoudh tl_e flo_,_ i'.'_under

the influence of a strong adw_rsepressure gradient_ T still _nish_:_s

at about half the bounda_ylayer thickness_ and that by decreasing the

cur,,_atureto l_if_ it pushesthe point where _ _ 0 by about the

sameamountas in the case of the constant presso_e flow. This seems

to indicate that curvature operates independently of the pressure gradient

and this mayalso be the reason why the value of (_I/A) _ obtained by

considering flat plate data_ works so well in this case. The designed

convex curvature not only causes Cf to decreaseby about 25_ (Figures
79 and 84)_ it also causes the mximtu_shear stress reached inside

the bouLndarylayer to decrease by the sameamount(Figure 86).

In conclusion_ the value of (_I/A) so obtained is also good for

pressure gradient flow and that the present methodcan be considered

rather successful in the prediction of boundary layer developments

along convex walls with arbitrary pressure gradient.

4.6.2 Turbulent Boundary Layers along Concave Surfaces

The present experimental investigation has shown that the turbulent

boundary layer on a concave surface is different from that on a convex

surface because of the presence of a system of longitudinal vortices.

However_ it is most desirable_ from the practical engineer's point of

view_ that turbulent boundary layers over concave surfaces can be predicted

by simple method like that discussed above. This would be possible and

therefore some approximations of the boundary layer growth could be

obtained if the foll_qing assumptions were _de about the flow. Firstly_

assume the vortex pairs that consitute tl_ vortex system are similar.

(This can be evident from Figures 64 and 65). Secondly, assume the fl_

to be completely characterized by _arameters which are obtained by

averaging over any one vortex pair. Finally_ assume the eddy viscosity

function given by equation (4.3-7) is capable of describing the resultant

"average" flow. That this assumption is feasible can be seen from
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equation (4.3-7). For concavecurvature_ g is negative_ so the factor

within the curly brachets in e_uation (4.3-7) is always positive. In

sJJr,p]e te_s_ this can be taken to characterize the increased mixing
of flows over concavesurfaces.

It is only in this sensethat the present calculation: are compared

with the measu_mentson the concavesurface. Since only two measure-

mentsat two different z planes in a vortex pair are made3 the averages

of the various integral parameters can at best represent approximately
the "average" flow.

Having established the premise for the comparisonbetweenthe

present calculations and the measureddata_ the results are presented

in Figures87 to 90. As a result of the vortex system_the Law of the

Wall does not hold. Since direct measurementson the skin friction have

not been made_the wall shear stresses at the four measuring stations

are not known. Becauseof this_ no comparisonsbetween Cf are mde.
Theresults for the velocity profiles are given in Figures 87 and

89. Presented in Figure 87 is the results at the x = 70 inches position.

The average _lues of 8* _ @ and H are included and these compared

quite favourable with the calculated values . The shapeof the profile

is also quite similar. However_the calculated boundary layer thickness

is not the sameas the average boundary layer thickness. At the x = 96

inches position_ the calculated values of 8" and 0 are approximately

45_ greater than the mean values between Stations 4 and 5_ but the shape

factor H agrees to within _ (Figure 89). This apparent difference in

_* and 0 is probably due to the presence of more than one system of

vortices at this position.

The calculated shear stress profiles at x = 70 inches and 96 inches

are given in Figures 88 and 90 respectively. The calculated shear stress

at the wall at both these locations seem to agree well with the measured

profiles_ and at x = 70 inches the calculated profile and the average

of the measured profiles corl_lated very well near the wall (Figure 88).
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Ev_'nthe maxirmam reached and the position where this r_%ximum occurs are

predicted quite correctly by the calcu!atcd profile. However_ far aw_,y

from tip _all, substantial difference between the calculated a_id the

average of tile incasured profiles begin to show. The difference increases

towards the edge of the boundary layer, and become constant in the free

stream. At x = 96 inches, the average of the measured profiles show

a rather constant shear stress across the boundary layer_ _ud towards

the edge_ the si_ear stress decreases steeply. However, the calculated

profile does not display such a shape at all (Figure 90). It has ti_c

same shape as that at x = 70 inches with the max_mun shear stress

located away from tlle wall. (The appearance of tlie shear l_mxi_m_n away

from the wall under a zero pressure gradient is due to the memory of

the adverse pressure gradient which the flow has gone ti_rough at the

entrance to the concave wall). Although the calculated value compares

favourably with the average of the measured values near the wall, the

calculated _alue is generally _ch lower than the average of the

measured values far away from the wall. However, this difference

decreases towards the edge of the boundary layer. Even then the

calculated profile does not vanisll but approaches a constant in the

free stream. The fact that the calculated si_car stress does not _nish

can be accounted for by the shear stress relation (4.2-19). As explained

in Section 4.2, _/P approaches the value of w(-2k U e -2ky) in the

free stream when w is taken to be _ outside of the layer. This
e

is a small viscous stress_ and in the actual flow_ the shear stress would

probably approach this value. On the otlier hand_ in the present method,

no provision is z_de to allow the eddy viscosity to slowly decrease to

w , the molecular viscosity, as the edge of the boundary layer is reached.

As a result, the value of v approaches 2 (see eq. (4.5-13)). For
e veF

flows along flat plates, the condition of zero vorticity in the free

stream implies zero shear stress too. Therefore_ it is i_m_terial what

value veF takes. For flow along convex surfaces, the shear st!_ss goes
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negative somewhere inside the boundary layer, and although vanishing

vorticity does not imply vanishing shear in the free stream, the

eddy viscosity at the point where the shear stress goes negative is

taken to be v so that the shear stress will again approach

-2ky
w(-2k U e ) in the free stream. Hence, in this case w adjusts

pw e

itself. This is evident from equation (4.5-10), since the quantity

inside the curly bracket decreases as _ increases. However, the same

quantity increases with _ if the curvature is concave, and this is

the reason why the calculated shear stress remains large towards the

edge of the boundary layer. This points to the need of modifying (_i/A)

in such a way that it will effect a rapid decrease in v towards the
e

edge of the boundary layer.

It can be argued that the condition of small viscous shear can be

satisfied by writ ing:

-- 8U

--uv=v +0 e

in accordance with Prandtl's 41929) mixing length argument. With this

expression for (-uV)_ the eddy viscosity hypothesis becomes:

kU(_U_y + kU) 3/2 (aUAy - kU) 2f

Ve " veFI i -/5 -kU)2 + kU)

Such an expression for v is undesirable because of the singular
e

beha_-ior of v as 8U_y _ 0 inside the boundary layer and
e

(_U/_dy + kIJ)"-" 0 towards the free stream. Therefore, in spite of the

fact that the condition of small viscous shear cannot be satisfied for

the flow over concave walls_ the present approach is adopted.

In closing, it can be said that the present method can be quite

useful in predicting the mean characteristics of flows over concave

walls if (_I/A) is modified so that the condition of small viscous

shear in the free stream is satisfied.
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Chapter V

CONCLUDING RE_RKS

5 .i Conclusion_

As a result of this investigation_ the following conclusions can

be drawn. For the sake of clarity_ attempts are made to divide the

conclusions into the fol_owing three categories. The first two

categories are concerned with the experimental investigation and

the first one is limited to turbulent boundary layers along convex

surfaces, while the second one dwells only on constant pressure turbu-

lent boundary layers along concave surfaces. The third and final

category includes those conclusions that are drawn as a result of the

theoretical investigation.

5.1.1 Turbulent Boundary Layers along Convex Surfaces

(i) In spite of the secondary flow which arises as a result of

the longitudinal curvature of the test wall, a nearly two dimensional

flow is established along the central plane of the convex test section.

However_ due to the rapid growth of the boundary layer thickness near

separation in the case of separating f!ow_ the secondary flow becomes

quite significant.

(ii) The Law of the Wall holds for turbulent flows along convex

surfaces. It's validity can also be demonstrated through the method of

matched asymptotic expansion applied to the curved turbulent boundary

layer ecluations. The skin friction obtained from Clauser's plot of the

velocity profiles correlates well with the momentum integral.

(iii) A skin friction relation in which A is both a function of

8" Sp

(7_w _) and _/R is obtained. The relation reduces back to the flat

plate skin friction relation as $/R _ O It is applicable to turbulent

boundary layers over plane or convex surfaces with arbitrary pressure

gradient so long as A (_/R , _P
bx ) is known.T

W
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(iv) Measurements in the case of constant pressure flow show that

the flow towards the end of the convex test section is not quite in

equilibrium although separately the velocity profile and the shear

stress profiles at the last two stations are quite similar. Also_ the

measurements indicate that even i_' e_uilibriu_i is reached, the defect

part of the profile will be quite different from that of the corresponding

flat plate profile.

(v) The initial decrease in the intensities of turbulence is due

partly to the favourable pressure gradient and partly to curvature. The

inability of the intensities to increase further downstream is a clear

indication of the effectiveness of convex curvature in reducing mixing

between fluid layers.

(vi) As a result of the reduced mixing, the boundary layer

growth is retarded on convex surfaces.

(vii) Also the ability of the flow to support adverse pressure

gradient is reduced, hence_ under the same wall static pressure distri-

bution, the flow would separate earlier than the corresponding plane

flow.

(viii) Turbulence energy production is drastically reduced and is

quite small at about half the boundary layer thickness.

(ix) For the case with zero pressure gradient_ the shear stress

decreases steeply outside the viscous region and approaches zero at

about half the boundary layer thickness. However, under the influence

of strong adverse pressure gradient_ the maximum shear stress occurs

at some distance away from the wall_ but it still goes to zero at

about half the boundary layer thiclquess.

(x) For the case with no pressure gradient, the shear correla-

tion coefficient again remains constant for the greater part of the

shear thickness_ but drops to zero steeply towards the edge of the

shear stress profile.
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5.1.2 Turbulent Boundary I_yers along Concave Surfaces

(i) A system of longitudi_,.al vortices similar to the Taylor-

Gortler type vortices exists. For a given geometry of the concave surface

and a given Re_molds number per unit length of the flow, the system of

longitudinal vortices is stations_ry and does not depend on the upstream

conditions.

(ii) The limited data lends evidence to the fact that there are

more than one system of vortices. At least, two such systems are detected

at stations _ and 5; x = 96.0 inches.

(iii) The boundary layer at the position of the trough of the wave

is approximately twice as thick as the boundary layer at the position of

the crest of the wave. Initial evidence also indicates that the growth

rate of the boundary layer is the same in both these positions.

(iv) Instability of the fluid particles, as a result of the

concave curvature; promotes mixing bet_een fluid layers, hence a sub-

stantial increase in the turbulence energy all across the boundary layer.

(v) The shear stress profiles at stations 4 and 5, x = 96.0 inches

show two peaks, one near the wall and one far away from the wall. The

location of these peaks for the measurements at the position of the

crest are different from that at the position of the trough. The

existence of two peaks indicates the existence cf two systems of

vortices.

(vi) The Reynolds stress u-_ is positive when measured at the

position of the trough and negative when taken at the position of the

crest. The opposite is true for xa--_ However, at x = 96.0 inches,

the distributions of uw and vw are definitely wave like and show

two peaks. Again this indicates that there are at least two systems

of longitudinal vortices at this stream position.

(vii) Unlike the case of convex curvature, there is no region

inside the boundary layer where the shear correlation coefficient is

constant. This is another indication of the three dimensional nature

95



of the flow.

(viii) For a concavely curved turbulent flow, turbulence energy

production is not confined to the region very close to the _ii, rather

it extends nearly to the edgu of the boundary layer.

5.1.3 Theoretical predictions

(i) The set of eciuations (4.2-15) to (4.2-18) is a self consis-

tent set of curved turbulent boundary layer equations.

(ii) The eddy viscosity hypothesis as proposed by Mellor and

Gibson is generalized to include the effect of curvature.

(iii) The _lue .0417 for the ratio (#I/A)is found to give

excellent correlation for all three cases including the concave curvature

ease .

(iv) The results of the present calculations supports the

assumption that the value of (_,/A)obtained by just considering the Law

of the Wall region can be used for the whole layer.

(v) For convex surfaces, the present method predicts the

boundary layer gro_Tth and the point o£ zero shear stress accurately.

The present method also predicts the separation point fairly well.

(vi) The present method can be used to predict the mean boundary

layer development on a concave surface.

(vii) For concave surfaces, becau_ of the existence of the

longitudinal vortices, the constant B in the Law of the Wall is no

longer a constant. Although a certain log region still exists, the

skin friction deduced differs considerably from that predicted by the

present method.

(viii) With convex curvature in the mean flow stream lines, the

maximum reached by the shear stress is about 75_ of the corresponding

flow over a flat surface.
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5.2 Recor:,',::<,,_l<]ni:lo!zT:, Cot Future ],Ior]t

The. folilo',,':lnZ extensions of the present investioation are

rc:cor:tT:tem:i:d fo_" future _,7ork.

(i) In vie_,: of th<_ similaL_ity of the equations that govern curved

turbulent boun<lery layers and those tl,_t describe stratified flo_,_s_ a

frequcnc/ co_,'rezponding to the Brunt-V'aisala frequency may exist inside

the bound:_ry layer. Both Eskinazi and yeh's findings and a preliminary

mca_,urem'_mt:_ by the author do not seem to indicate the existence of such

a frequency. }Iowcver_ due to the limited time available_ this _s not

pursued in depth, but the author believes that this aspect of the flow

should be investigated further.

(ii) Efforts should be devoted to establish a form_l analogy bet_en

the centrifugal force effect and the buoyancy effects in stratified flow.

(iii) Spectral measurements should be made in order to better

understand the detail structure of curved turbulent boundary layers_

and the results compared with the data of Eskinazi and yeh.

(iv) The syste_, of longitudinal vortices should be studied in

more detail_ so that its effect on t)_ turbulence structure can be

better understood.

(v) Measurements of shear stress at the wall are necessary for the

clarification of the question of the validity of the Law of the Wall

in concavely curved turbulent boundary layers.

(vi) More measurements should be made in the transverse plane to

see if similarity of the flow exists. Also_ more measurements are

required between the crest and the trough of the wave to establish the

fact that in the mean_ such a flow can still be treated assuming two-

dimcnsiona!ity. No doubt_ this will be of value to the practical engineer.

(vii) Parametric study of the curvature affect using the present

calculation method will help improve design of such things as aerofoils_

turbine blades_ etc.
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APPE_mIXA

CONSTRUCTION DETAILS OF THE CIFRVED WALL _J}[FEL

The curved wall tunnel used for the present investigations is an

open-return; suction type wind tunnel. It is powered by a two speed;

i0 H.P. fan. The lower speed is capable of giving a flow with a Reynolds

number per unit length of 4.37 x 105 while the higher speed gives a

corresponding Reynolds number of 7.56 x 105. Since all the runs on both

the convex and concave test _alls are conducted with the lower Reynolds

number_ the higher speed capacity of the fan }ras never used. The tunnel

consists of six different units; and these are: (i) the entrance section

(2) the contractionseetion (3) the straightsection,(4) the curved

test section; (5) the exit section; and (6) the composite unit of the

90_ bend; the diffuser; the fan and its housing. The tunnel is assembled

by bolting these six units together as shown in Figure 1. With this

arrangement; the curved test section can be changed with relative ease.

The entire top wall and floor of the tunnel; from the inlet screen to

the diffuser; is flat; thus giving the tunnel a rectangular cross-section.

The depth of the tunnel is 4 feet and this gives a nearly two dimensional

flow on the side walls of the tunnel. The quality of this two dimensional

flow has already been commented on in both Sections 2.3 and 3.1

The entrance section of the tunnel consists of five i_]dividual

compartments 3 feet wide by 4 feet deep. Each has one layer of 2 1/2

inches thick Hexcel aluminum honey-comb of 1/4 inches cell size; and

each compartment is separated by a single layer of 18-mesh screen. These

compartments are bolted together with two more layers of screen; one in

front of the first honey-comb and one do_stream of the last honey-comb.

This entire unit is then bolted on to the contraction section.

The contraction section is designed to 6ire a contraction ratio

of 6:1. The side walls of this section are made of I/8 inches thick

masonite; bent to the required curvature and kept in place by five ribs

of i inch thick fir equally spaced on each wall. T_ top and bottom
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wall._"of the tunnel are m_dcof !/2 inches thick p_per faced fir pl)_.:ood_

and aru bolted on to the ribs on the side _nlls. Both side >:a]]s are

lined _Jilh 1/16 inches thick _.,J-litepanelite to give the re<f_ired smooth

surface.

The straicht section iF, )_ feet, long and has a cross-section of 6

inches by I_8 inches. This cross-sectional geomct_j leads to nearly two

dimennional flow every,,Jlc_re on the t_o side walls. The side _Jalls

are made of i/2 inches thick paper faced fir plywood lined with 1/16

inches thick white I)anelite. In order that the joint between the con-

traction scction and the straight section be smooth; the white _xme]ite

lining is of one piece. This can be accomplished by cementing the lining

on to the side walls after tile straight section has been bolted on to the

contraction section_ thus Jnaking these two sections a composite unit.

One side wall of the straight section is hinged to the contraction seetion_

thus rendering it adjustable. The adjustment is 1/2 inches at the end

of the straight section. The original intent was to achieve added control

on the free stream velocity distribution especially at the entrance to

the convex test section. L_ter_ it };as found that the free stream

velocity remained rather constant up to about $ inches to the exit end

of the straight section_ stud a flexible flap installed in the last

inches will provide the necessary control. A diagram showing the flap

and its control mechanism is given in Figure 31. With the installation

of the flapj there is no need for the wall to be adjustable any more.

Therefore_ it is positioned to give a unifomn width of 6 inches with the

fixed wall and then securely clamped to the top and bottom wall of the

straight section. Except for a section of 1 feet wide_ i/2 inches thick

paper faced fir pl_a,Joods are installed as the top and bottom walls of

this section. The side walls are strengthened with five ribs of 1 inch

thick fir eciually spaced between the to 9 and bottom to prevent them from

wobbling. A 1/2 inches thich by i feet wide lucite is placed mid-way

between the entrance and exit end of the st_ai,ght n<,ction; so that flo_



observation can be made.

Together two curved test sections are made_one has a convex test

wall while the other has a concavetest wall. The geometryof these

curved walls have already been discussed in Section 2.1.2 and their speci-

fications given in Figures 3 and 4. Hence, only the details of their

construction will be described.

The convex test wall is madeof cold rolled steel 1/32 inches thick_

with surface finish specified as 63 micro inches. The wall is rolled to

the specified curvature and its shape is maintained by four ribs of i

inch thick fir also cut to the samecurvature (see Figure 2). It is

then bolted to the straight section and to the fixed wall of the exit

section. The wall opposite the convex test wall is also madeof the

samematerial. Since it is necessary to be able to control the shape of

the outer wall so that the desired pressure distribution on the convex

wall can be obtained_ three rolls of struts, with six in each roll_ are

installed. The l_ear adjustment is large enoughto give both a constant

velocity distribution and a linear decelerating velocity distribution on

the convex wall. Details of the control mechanismis shownin Figure 91.

As explained in Section 2.3.3_ end wall jets are required for control

of the secondary flow. Four tangential jets of 1/8 inches I.D. are

installed at the entrance to the curved test section on both the top and

bottom walls of the tunnel. Twopressure regulators graduated to i psig

are used to regulate the air supply which is from the shop'srain com-

pressed air supply° The large fluctuation of the main compressedair

supply madethe installatio_ of the pressure regulators necessary. The

details of the end wall jets together with the side wall jet and the

flap are shownin Figure 31. The side wall jet has already been dis-

cussed in Section 2.2.3. Due to the presence of the side wall jet, the

entrance end of the adjustable wall is secured to tile straight section

frame. The exit end is then screwedonto the adjustable wall of the exit

section.
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For no other reason but the availability of material in the shop_

the concavewall is rolled out of 1/32 inches thick stainless steel with

a surface finish specified to 32 micro inches. The shapeof the wall is

maintained by two ribs of 1/2 inches thick aluminumalloy spaced 28

inches apart. The opposite wall is madeadjustable through two rolls

of struts_ with nine struts in each roll. It is bolted to the straight

section and the fixed wall of the exit section. The details of the

adjustable inner wall is shownin Figure 92. The samenumberof tangential

wall jets are installed at the entrance to the curved section. However_

no side wall jet is required becausethe inner wall is adjusted to mini-

mize flow deceleration at the entrance to the concavetest section.

Becauseof this_ the entrance end of the adjustable inner wall can be

bolted to the straight section. Again_ the exit end is screwedonto

the adjustable wall of the exit section.

The bottom wall of the curved test section is the base which

also serves as the support for the tunnelj while the top wall is made

of 1/2 inches thick lucite. The lucite top is not clampedor bolted

onto the side walls. The pressure difference between the ambient air

and the flowing stream will press the top onto the side walls. Leakage

can be prevented whenrubber seals are cementedonto the side walls as

shownin Figures 91 and 92.

The exit section is so constructed that one adjustable wall is

all that is required to accommodateboth the convex and concavetest

sections. Thencomethe 90° bend, exit diffuser and the fan and housing

unit which are all bolted together to form one composite unit. The

support for the whole tunnel can be adjusted to give a level bottom wall.
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APPENDIX B

POSITIONING A}_D ACCUP@_CY OF TI_ VARIOUS PROBES

i) Conrad Probe

The Conrad probe is used as a nulled direction probe. The null

angle can be fo_md by aligning the probe in the di_mction of flow in the

pipe flow system (Figure 93). The Conrad probe is carried by a rota_'y

probe carrier (Figure 9 ) which in turn is fixed to the probe carrier

(Figure I0). The whole unit is then mounted on a horizontal platform_

and the Conrad probe introduced into the pipe flow horizontally. Every-

time the Conrad probe is introduced into the rotary probe carrier, it

is set into the same position by a set screw with a conical tip that

fits right into the conical dent in the probe. This arrangement allows

a reference for tl_ null angle measurement to be established, and does

not depend on the relative location of the whole unit as long as the

probe carrier is always mounted horizontally. Once the null angle is

found, the whole unit is then transferred to the curved wall tunnel.

The Conrad probe is introduced into the test section from the wall

opposite the test wall, and the probe carrier is mounted as shown in

Figure I0. In order that the axis of the probe be normal to the wall

where measurements are to be taken, radial lines are inscribed on the

bottom wall and the lucite top of the tunnel. The probe axis is then

aligned with these radial lines by sighting with a telescope placed on

the lucite top. The Conrad probe is shaped like a goose-neck (Figure 8)

so that the edge of the probe is aligned with the axis of the probe.

Hence, once the axis of the probe is aligned with the radial lines; the

edge of the probe will traverse along the normal to the wall. Since

both the curved wall and the Conrad probe are made of metal, an electrical

circuit can be so arranged that when the probe is touching the curved

wall, a light goes on. When the probe is brought back to such a position

that the light just goes off, the z_ading on the verifier mounted on the
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y_robe c_rrier is noted. This gives the zero readi_g fo_' y . This _,_b _

of po:sit:Lo_i_ig the probe has an accuracy in y of the order of • O.OOl

inch,_::;. Since the t_ver:_e i:: to_.,%rds the free stream_ and because of

the r_mall unc_,,rtainty in the measur'emer_t of y _ the _nea.:urement:3 near

the _all _ill be _r_uch less accuratu than tho::e far a_:ay from the wall.

The rotation of the Conrad probe is controlled by a set of gears so

arranged that th_ sr:_]lest angle which can be measured accurately on the

dial is one tenth of a degree.

The reaso_l for choosing this particular probe (see Figure 7 for

probe geometry) for the yaw measurements is because of its high sensiti-

vity and its zero scale effect (see Bryer_ Ualshe and garner 1958)

The pressure difference bet_¢een the two openings is measured by a Pace

Model CPSID-.IFSID pressure tr_nsducer and the _ead out is on a DISA

Digital Voltmeter. Because of the pressure fluctuations_ the Conrad

probe can be rotated to read to +.01 volts only. The sensitivity of

the probe decreases _ith the free stre:-,m velocity (see Figure 7)_

therefore the accuracy of the yaw measurement decreases as the _¢all is

approached. To determine the effect of the free stream velocity_ the

null angle of the probe is mea_;ured for two different velocities in

the pipe flow. For a velocity of 72.6 ft/sec._ it was found possibl_ to

detemnine the null angle to + .2°_ and when the velocity is reduced to

28.9 ft/sec._ it was only possible to determine the null angle to + 0.5 ° .

Even though the turbulent fluctuating wlocities in the curved tunnel

are not the same as that in the pipe flow_ much the same accuracy would

be expected _hen the Conrad probe is used to measure the secondary flow.

2 ) Total llcad-Probe

The total-head probe is also shaped like a goose-neck _¢ith the

edge of the probe aligned with the axis of the probe (Figu_re 7). With

this co_f'ibu_ration_ the total-head probe can be positioned in the tunnel

in the sa_e _nner as the Conrad probe_ therefore_ the same accua'acy

in the _oasurcment of y



The major source of errors of a total-head probe used for measure-

ment on a low velocity stream are the effect of turbulence, the effect

of yawing and the effect of a wall. The errors due to the effect of

turbulence on total-pressure readings are not well understood. However_

asstuningthe frontal part of the probe to be a stagnation point,

Goldstein (1936) found theoretically that the total-head probe measured

the total head of the total velocity vector, i.e.,

Pti = Ps + ½ p[(U + u)2 + v2 + w2]

This expression is correct only if the frontal area can be considered a

true point. However,due to the finite size of the total-head-tube

hole, deviations from the aboveexpression maybe expected. Aside from

the lateral velocity gradient effect, which is neglected in the above

expression, there is also the lateral velocity fluctuations effect.

This maynot produce an impact pressure as given by Goldstein's expression,

but rather appreciably smaller. Hinze and Vander HeggeZijnen (1949)

neglected the effect of the lateral turbulence velocities and arrived at

Pti P + ½pU2= + ½pu 2
s

If Pt is the true total pressure, then

Pti - Pt u 2

2 : 71
g pU

Hence, for a turbulence level less than 10_, the error in total-pressure

measurement will be less than I% of the dynamic pressure. For the

present investigations, the turbulence level in the flow along convex

surfaces is always less than l(_p, therefore the readings of the total-

head probe are not corrected for turbulence effect. As for the velocity

profile measurements on concave surfaces, hot-wires are used, thus

eliminating the need to correct for turbulence effect, since in this
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ea_:e_ the turbulence level is expected to be higher tlmn the cornesponding

flow alonz convuz surface.

Oraceyj et.al. (1951) found that most simple total-head probes are

rath<r insensitiv_ to yaw. They presented their data in team,s of the

"cri_ie_l angle" of a given probe. The "critical angle" is defined as

that angle at which the erro_ _ in reading the total pressure amounts to

l_J of the indicated dsmamic head. They found that for all sJJnp]e probes_

ranging from cylindrical heads to ogive heads_ the critical angles are

of the order of + 15 ° in subsonic flow. Rogers and Berry (1950) also

found that the critical angles for a round nose probe and a flat nose

probe are of the order of + 15 ° . Therefore; the flat nose total-head

probe used in the present investigation is quite insensitive to ya}._.

Although there is a certain amount of secondary flow in the test section

due to the longitudinal curvature of the test wall_ the flow in the

plane of syTmnetry is not expected to deviate too much away from the

stream direction. Yaw measurements show that the angle of deviation is

less than a degree. Again; there is no need to correct the total pressure

measurements to account for probable yaw of the flow.

Very little work has been done to investigate the probe-wall effect.

By observing the response of a one-sided rectangular tube with the wall

as the bottom surfaee_ in a known laminar profile, Stantonj et.al. (1920)

were able to plot "effective position of tube" against "opening of tube"

and used this plot as a calibration curve in interpreting measurements

near the wall in turbulent l_rofiles. The correction for wall effect

was found to be in the form of an "effective displacement" of the probe

centre. Corrections to the measurements near the _all are made using the

curve of Stanton; et.al._ but the corrections are found to be negligible.

In using the curve of Stanton; et.al._ the assumption was made tb_t the

effective displacement was equal in the calibrated laminar boundary

layer and in the measured turbulent layer. However; this assumption

does not hold even in the viscous sub-layer of the turbulent boundary



layer. As a result_ the wall effect is not ful_y accounted for by

the curv_ of Stanton, et.al. On top of thi;_._the tl_nsw_rse velocity

gradient effect is also important. These two effects together would

account fur the observed shifts of the measurementsnear the wall.

3) ]{or-Wire Probes

The hot-wire probe is introduced into the tunnel much the same way

as the Conrad probe and the total-head probe. However, in this case_

the distance between the hot-wire and the wafti cannot be meas_tred by

the same method. This is due to the fact that the hot-wire probe_

unlike the Conrad probe or the total-head probe_ is very fragile, hence

the hot-wire will break once it touches the _all. To remedy this_ a less

accurate method for determining y is used.

A broken hot-wire probe is used as a du_m_y probe. The length

(from the tip of the prongs to the edge of the adaptor) of this dur_ny

probe is measured accurately (to one tenth of one thousand of an inch)

using a telescope. The length (from the hot-wire to the edge of the

adaptor) of the hot-wire probe is also measured to the same accuracy.

First the du_m_y probe is used and the probe is traversed im_ards towards

the test wall until the tip of the prongs touches the wall. This closes

the electric circuit and the light goes on. The probe is then brought

back until the light just goes off. The reading on the vernier in the

probe carrier is noted. The whole probe is then reti_cted until it is

outside of the tunnel. The dummy probe is removed from the adaptor

and the hot-wire probe is put in its place. Knowing the bacl_lash of

the probe carrier_ the length of the d_r_my probe_ the length of the

hot-wire probe and the vernier reading at the point where the dummy

probe just touches the wall_ the hot-wire probe can be set at any distance

away from the wall by moving the probe towards the test wall. With this

arrangement, the boundary layer is traversed inward from the edge and

not outward from the _,_ii.

The miniature TSI hot-wire probe has a mark on it so that every
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t_r,_ it i,t snappedinto the acL'iptor_good contact is enr_uredonly when

the _m_rkon the probe i_; flushed with the edge of the adaptor. This

also ensures that t_e length bet_,_enthe hot-wire and the edge of the

acL_ptorJz alway_ the same. This fact is borne out by repeated measure-

me_t of the length _:h,en the _iniature hot-wire probe is snappedin and

out of the adaptor. TheTf_xi_munvariation betn_eenfive different

measurementsis less than 0.001". ThebacP_lazhof the probe carrier

is measuredby a dial gaugeto 0.001". Repeatedmeasurementsshowthat

the backlash w_ries between0.006" and 0.010". The backlash was also

checkedfrom time to time and in no casewas it found to exceed0.010".

A _ean value of 0.005" i5 used for all hot-wire measurements.

With this arrangeme_t_it is possible to determine y to an accuracy

of + 0.008". Since the accuracy of the hot-wire measurementnear the w_ll

dependson the size of the wire other than the velocity gradient_ heat

transfer to the _ii_ etc._ it is not very meaningful to try to measure

the turbulence velocities any closer to the wall than the length of the

hot-wire. The miniature TSI hot-wire has a sensitive length of 0.050"_

therefore an error in y of + 0.008" will not contribute very muchto

the overall error of the turbulence velocities measurements. Besides_

the measurementsat Station I serve as a check not only in the two

dimensionality of the flow_ but also in the accuracy of the above

arran_nennt for the determination of the position of the probe awayfrom

the wall.

The various effects associated with the rotating-wire methodthat

affect the accuracy of the hot-wire measurementshave been discussed by

Bissonnette (1970)_ therefore they will not be repeated here. As for

the reliability and the overall accuracy of the rotating-wire method_

Appendix C discusses this in somedetail.
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APPEND]ZK C

FULLY DEVELOPED TUP_BU_[2.TYf Pii_ FI_DW EXIV/RIMEIFf

In order to test the accuracy of the rotating-wire method_ a

fully developed pipe flo_¢ experiment is set up. The pipe assembly 1_s

a convergent nozzle at the entrance. This is then followed by a diffuser

and two layers of 2 1/2 inches thick Hexcel aluI_inum honey-comb flow

straighteners of 1/2 inches cell size. The flow straighteners are pre-

ceeded and followed by two 18-mesh screens. This is follo_d by two

18 feet long aluminum pipes of 6.005 inches I.D. The working section

is downstream of the aluminum pipes and is mde up of one 3 feet long

lucite tubing which is machine bored to 6.005 inches I.D. Downstream

of the lucite tubing is another aluminum pipe of 3 feet long. In order

to minimize vibration in the flow in the working section, the exit diffuser -

fan housing unit is connected to the aluminum pipe by a bellow. The pipe

flow tunnel is of the open-return, suction type and the air is drawn in

by an axial flow fan driven by a variable speed d.c. motor. A picture

of the pipe flow tunnel together with the hot-wire equipment is presented

in Figure 93.

Fully developed turbulent flow is obtained at about 60 diameters

downstream of the entrance. The axial pressure gradient for the next 18

diameters is plotted in Figure 94. The friction velocity can be calcu-

lated from the measured pressure gradient and is given by:

r.
2 l 1 dp

U _ _ --

2 p
(C-l)

dp
where r i is the inner radius of the pipe and _ is the axial pressure

gradient. If the flow is fully developed turbulent flow, the Reynolds

stress uv is related to the friction velocity u T by the expression:

-- 2 (__)uv = uT . (c-2)
1

However_ very close to the wall_ this does not hold.
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The measured uv is comparedwith the theoretical prediction as

given by equations (C-I) and (C-2). The comparison is sho_,min Figure 95

and the _eneral agreement is good. The measurednormal stresses u--2, -_2

and _2 are shownin Figures 96, 97 and 98. Together with the present

data is also plotted the data of Laufer (1954), Sandborn(1955), and

Patel (1963 and 196_) for comparisonpurposes. It is seenthat the

present data falls well within the evident scatter between the various

sets of d_ta.

If the flow were tEuly axis)_netric and fully developed_then the

off-dia_onal stress components uw and vw are zero. The values uw

and vw as measuredby the rotating-wire methodare less than _ of

the local _ Also_ these values are randomly distributed across the

pipe.

The above comparison showsthat the rotating-wire methodis rather

reliable. It also indicates that, in similar flow conditions_ the

rotating-wire methodwill permit the determination of each componentof

the Re_u_oldsstress tensor to about 5_ of the locally measuredturbulence

energy per unit mass. This estimate will no longer be true in regions

of very high shear such as boundary layer measurementsvery close to

the wall.

The abovework on the verification of the rotating-wire methodwas

performed in cooperation with Mr. Luc Bissonnette, who is also a graduate

student in the Departmentof Aerospaceand Mechanical Sciences.
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APPENDD: D

CURVED BOUNDARY IAYER EQUATIOHS

THROUGH HETHOD OF _TCHED AZY}G_0TIC EXI_AZSIO}Z]

Equations (4.2-7) to (4.2-9) are made non-dimensional by dividing

all velocities by U , all coordinates and the radius of curvature R
o

2
by _ and the pressure by pU . The Reynolds stresses are made non-

o
2

dimensional by u t where ut can be any velocity characteristic of

the turbulence field. After some algebra the equations can be written

_u
_-_ + g_ [(l+ E)v) (D-l)

l _u _u K l _P
l+--_u gf + v _ + i+--_w = l+E _x +

l ;_ [c2 2 2 _u 2K
I+KY_X T + c _ ( +--V)]xx I+KY _X I+KY

2 _ U i _V+ g_ [ 2 _XY + _ _ [(I+E) (N--_) + l+_ 87 ]}

2K 2 _ U 1 _v+ __+E{2 _xY+ _ [(l+_) _ (L--_) + _+m:_-]} (D-2)

i _V _V K U2 _P
1-7-_u _- + v _. __+_ : - _

+ 1 _ [e 2 + e 2 _ [(I+KY) _ Ul+m: _x _xY (L_) +

1 _v _ 2 _v
l+_x ]} + _ {_ + _ _ 2_] -

2 _u 2K

I+KY I+KY

_V

[c2_ + 2 _, 28__]] (D-3)
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_- _v _u K
- u (D-_)

I+KY SX BY I+KY

where
mj

tensor and

2
2 ut

C
U 2
o

T.. are the non-dimensional cor._ponents of the Re)molds stress

2 ^

U_
o

Mellor 41970) has sho;_n that --_ _ 0 as c _ 0 for arbitrary n .
n

c
Therefore_ the technique of matched asymptotic expansion in terms of c

is applied to equations (D-l) to (D-4) for the sole purpose of seeking

a set of self-consistent second order boundary layer equations.

Due to the presence of the two small parameters c and @ ; three

regions exist in the flow field and these are: (i) the Outer or Inviscid

Region where the length scale is _ ; (2) the Middle or Defect Region

where the characteristic length is A t = _ , and (3) the Inner or

Viscous Region where the length scale is _A t = _c_ Since the radius

of curvature is assumed to be of the same order as _ ; K(X) = 0(i)

Mellor's 41970) procedure is followed closely in the subsequent derivation

of the boundary layer equations.

Outer or In_iscid L_yer

In this region the free stream turbulence and the free stream

vorticity are assumed to be zero; hence T.. : 0 _ _ = 0 and the following
13

expansions are assumed

U = UI(X,Y)+ cU2(X,Y)+ c2U3(X,Y) + ......

V = Vl(X,Y)+ _V2(X,Y)+ _2V3(X,Y)+ ......

p = PI(X,Y)+ cP2(X,Y) + c2P3(X,Y) + ......

(D-_)

Substitute (E-5) into equations (D-l) to (D-3) and collecting terms,

the following is obtained_
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to first order

8Ul

gf-+Ty _(I+KY)VI] = o

1 8PI

I+KY _X

1 _VI 8VI K 2 _PI

I+KY Ul _ + Vl 8y l+KY UI - 8y

(D-6)

to second order

3U2

_- + _ (I+KY)V2= 0

1 _U2 _Ul 3U2 _Ul_

I+KY[U__ + ']2_-_--]+ [v__ + v2 _-V-]

3v2 _v_} _v_ 8ve
I+KYCut_ + u2 _ + {v2_ + vl_-_-_

+ Ki+---_(ulv2+_2vl)

i _Pe

I+KY _X

K 8P2

1+KY_#2 _y (D-7)

to third order

_u_/3
_x + _ {(I+KY)VB}=0

_']3 _U2 _UI} _U3i {UI + U2 + U3_+_ _ _ _ + cv__-_-

_U2 _UI K 1 _P3
v2_- + vB g_-}+ -- _u_vB + uev2 + UBV_]=I+KY • I+KY _X

8V 3 8V 2 8V I 8V 3 _V 2 8V 1

1 [UI + Ue + US + [V1 + V3 ] _l+KX _ _ _-X'-] _ + V2 y_ y_

El _ _)P3
I+KY{U_ + _UI UB_=-y_y- (D-8)
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Middle or Defect layer

In this region_ the length scale is A t = c£ , therefore Y = ey

where y is the normal coordinate in this region. In addition_ the

following exD_nsions are asstm_ed

2

U = Ul(X,y ) + cu2(X,y) + c u3(X,y ) + ......

2

v = C_l(X,y) + c_2(x,y)+ _ _3(x,y)+ .....)

2

p = pl(X,y) + cP2(X,y) + _ P3(X,Y) + ......

2

Tij : tlij(X,y) + et2ij(X,Y) + e t3ij(X,Y) + .....

(D-9)

Hence

and

i + KY : i + _Ky

2 2 3(Ky)3 4(Ky)4(1 + eKy) -1 : 1 - eKy + c (Ky) - ¢ + e

Rewrite equations (D-I) to (D-3) in terms of X and y Substitute

(D-9) into the resultant equations and collecting terms, (since _ =

0(en), all terms that have _ as coefficient can be neglected) the

following is obtained:

to first order

_uI _vl

bx by

_u I _u I bP I

ul_ + VlbT =-_T (D-lO)

_Pl
0 -

_y
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to second order

bu2 by2 b(K_l)

bx + by by
= 0

bu 2 bu2 bu I bu 1

ulg_- + v_-+u2_-_+ vl__- +

bu I bP2 btlxy

Kv_(ul+ Y gy-)= -b_-+ b-V-

KUl 2 b P2
= g-_-

to third order

bu3 by3 b(_vv2)

3x by by
- 0

bu 3 bu 3 bu I bu I bu 2

uI_T+ v__- + u3_- + _3_-_-+ _2_ -

(D-11)

bu 2

+ v28--_ + Ku2 Vl + KUl v2 +

bu 2 bu I btlx _ bP 3

Ky [v1_+v 2by by } =-b-x-

btlx x bt2xy

+ b_ + b-7-- + 2Ktlxy

bY 1 bY 1 bP 3

(D-12)

Inner or Viscous Layer

In this region_ the length scale is

A_

y = andeeY

e&t ' hence y=ey or

I

l+K_f
- 1 - _? (K2) + (_)2 (K2)2
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The following ex1_nsion is assumed:

^ 2

= _z(x,_) + _u2(x,_ ) + c _3(x,_) + ....

2

V = cC[$1(X,_ ) + c_2(X,_ ) + _ _3(X,_) + .... ]

2

S : fil(X,p) + cfi2(X,_) + ¢ fi3(X,_ ) + .....

{lij(X,_ ) 2 ^3ij(Tij = + ¢{_..(X;_) + c t X,y) +

(D-13)

Rewrite the equations (D-l) to (D-3) in inner variables. Substitute (D-13)

into the resultant equations and collect terms, the following is obtained:

to first order

+ - O
8x _

2fiI
0 -

_i
O -

(D-Z4)

to second order

8G2
-'I-

;x

to third order

89-2
- 0

_9

0

_P2
0 = _

(D-J5)

_G 3

;x
- O
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^ _G3

o - _Ct2_y + _-_--]

_3 _£1yy (D-16)
o : -_7- + _

The aim here is to obtain a set of first order curved boundary

layer equations_ therefore the solutions of these various equations will

not be discussed. Instead_ the reader is referred to the paper by

Mellor (1970). The boundary conditions for the three layers are very

well discussed in Mellor's (1970) article and these will not be repeated

here. However_ it should be pointed out that the conditions of zero

vorticity in the free stream is satisfied by matching the vorticity in

the middle layer as y _ _ to that of the outer layer as y _ 0

This gives :

to first order

8u I

Lim _y 0 (D-17)
y "--_ oo

to second order

8u 2

Lira { by K u 1} = 0 (D-18)
y-_oo

The set of second order boundary layer equations is given by the sets

(D-If) and (D-15). The free stream velocity is given by (D-17) and (D-18).

Since the first order equations in the Middle and Inner layers are the

same as that for a flat plate (see Mellor 1970 ), the solutions to u I

and v are :
1

uI = Ul(X,O)

vI = - y u_(x,o)
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With these substitutions, the boundary layer equations become

_u2 _v2 dUI

 u2)
u!_+(u2-y_y _x -

d.mj 2, dUl _ (_) (D-20)

_P2 (D-21)
mj12(x,o) - _y

whe re

_u 2

P - uv + w _--_-

and

_u 2

T_ (_- + _l ) = 0
y-_

The rather surprising result is that equations (D-19); (])-20)

and (D-21) are linear. It is believed that they are the self consistent

turbulent boundary layer equations (also for the plane case obtained by

simply setting K = 0). However; turbulent boundary layer researchers

have long been accustomed to making some of the approximations involved

in these equations (and justified consistently in a laminar like boundary

layer approximation); but not others. Notably the non-linear terms in

the x-momentum equation are retained. For the present working equations;

the same practice is adopted here. This is to conform to convention and

hopefully to improve accuracy although in the light of the present

asymptotic analysis this practice means that some higher order terms are

being reinstated while other terms of the same higher order are being

left out. Thus; reinstating some terms found in the original equations;
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the set of boundary layer equations become:

3U 3V

_u _u i _P _ pU_'_ + V_y + kUV : - -_x+p _y ( ) + 2k--p (D-23)

k U 2 -
p p _y (D-24)

+ k_) : o (D-25)
y-_

Here the full non-linear advective terms in the x-momentum equation

are reinstated. Also, in order to satisfy equation (D-25) , i.e.

-ky
U _ U _ U e as y_ = , it is necessary to include both viscous

p pw

terms in equation (D-23) where

_u _ kU)p - _e (_y (D-26)

In this way the combined viscous term will limit to zero and the outer

boundary condition can be satisfied ewn if v approaches constant as
e

y _ = . The constant may be the actual molecular viscosity or it can

be the eddy viscosity artificially maintained constant for large y .

In the case of plane flow it is well established that whether v main-
e

rains a constant value or decreases for large y makes little difference

in the results.

As explained in the text; it is necessary to keep the term kU 2
P

on the left of equation (D-24) rather than replace it with kU 2 , for

example. Otherwise; the pressure term will not quite balance out the

advective terms and the integral of equation (D-23) will not exist. This

is not only uncomfortable with regard to the yon Karman integral 3 but is

equally unccmfortable in the process of numerical integration of the

full equations.
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APPENDL_E

DERIVATIOH OF 2_iE '_JRBULEJICE ENERGY EQUATIOn,S FOR

CURVFD ]30"[J_ff)fd_Y LAY_IRS

2 w2The equations for _ , v and can be obtained by multiplying

equation (4.2-11) by u , equation (4.2-12) by v and equation (4.2-13)

by w . Similarly the equation for uv is obtained by adding v times

equation (4.2-11) to u times equation (4.2-12). Making use of both

the continuity equations for the mean and fluctuating quantities_ and

taking the time average of the equations, the results are:

a7 + l+ky _x

a -- -_- _{_-_ 2 :_+ _ {u2V + u v - 2u _xy) + - u _xz

-- -- -- 2u2 8U
k [2uvU + 3 u2 V + 3 u2v} ....

l+ky l+ky 8x

--_U 2 8u 2 8u

- 2 _v_7 + _ p a_ l+ky_

_u 4_ -- _u

- 2 Txy _y + l+ky UTxy 2 _xz _z
(E-I)

+ i -v_o }
_7 l+ky ;3x y

+_{2v+a-- -¢3+2-,,(p__ ):_+ t:7-_-2v-_s_'

-L{4_u - v2v+2u2v- v3] =
l+ky

2uv 8V

l+ky _x

2_
-2 8V 8v xy 8v 8v 8v

- 2 v -- + 2p 2 _ ---2
_y _y l+ky _x yy _y yz _z

2k

l+ky

(E-2)

v(_xx - _,7 )
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_w 2 i b -- _2
+ [w2 U + uw

t l+ky b x

m

- 2 w _xz } +

8__ {w-_V+ vw--2 2wTLz}+ b-_ [w--3+2w(p-Tzzby

bw 2¥xz bw

k [w2V + _2] : 2p _z bxl+ky l+ky

)]

3w 2k -- 3w

- 2 _yz _y + l+k---_w Ty z - 2 _zz 3z

3uv i 3 -- 2

37 + l+ky 3X {uVU + u v - u Xxy

3 --2 __

+ _p-_xx )] +_ [_v+uv - VTxy

+ u(p-_ )] +_ {uvw - u_y z - V_xz ]

k v2_2u 2 2 u3 --2
+ _ [( )U + u v - + uv

m

2
u 8v 8v

+ 2uvV} :
l+ky 3X UV 3y

u-V 8U 2 8U 8u i 8v
(E-4)

"_xy3u bu bu

l+ky 3X Tyy by yz 3z

_xx 3v 3v

l+ky 3x _Xy_yy

8v 2k -- k

-_ -- + _vT -_U(_xx-_yv)xz 3 z l+ky xy l+ky

In accordance with the mean turbulence field closure scheme of

Mellor and .Herring (1970), assumptions are made to re]_ate all terms in

equations (E-l) to (E-4) in terms of

these assumptions are:

. For the sake of completeness,
z j
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_u. 8u q32 j 2

_kj _ + _ki 8x k 3 A 6ij

(_.-6)

2_2 8_
mui = 3 8x. (P.-8)

1

BTk 8_T_,_k 8_-Vj

ui jkUu = -q_3 { 8T.2 + 8Tj + 8T k } (E-9)

With these simplications and after much algebra; equations (E-l) to (E-4)

re duc e to

F
Dt

- 2 uv 8y l+ky

m 8 i 8u2 2 l B_ (_.-i0)
2+ky 8x {3(_3+v) l+ky 8x + _ %1_2_ _T ]

8 2 8_T 8u-2_
+ _ {(_3+;)(YJky 8:,: + 8y ':}

8 2 8_w 8u 2
+ _ [(_'3+_)(T_y8_ + _T-,}

2 8u-T 8u2)}

-- 8u2)}k 2 8uv

Dv

Dt

2 8V i q 2 1 2 2 q3 4k

2uv 8V 2v (v - ) 3 A l+kyl+ky 8x 8y 3 _i 3- q - --- + -- uVU

+ l+kySx {(q_3+v)(_y 8x + 2 8y '] + _y [3(q_3+v _ + T q_2 8y

* _ {(_3+_)(_ _ + _ }
k 2 8uv

[(2+_ _3+_< _+_7Bx
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M

_u2 _ k 2 _u_ _
OT -- 3 _-'_-)} l+ky [q_3(1-$-ky _x + _-7-)} (E-f1)

2
IY,._

Dt
l__ (w2_
3_ I

i 2 q3
l _ l _2 B_)

+ z+ky_x {(_3+v)(i-J_y _ + a 3z }

+ _y [(q_3+v)(_--_ -- + 2 _z ] + _ (3(q'_3+v)_--_ _ q'_2

l+ky [(cIg3+v _y + 2_z ] (_,-z2)

Duv

Dt

--2
i q -- u 8V

- - - uv -

3 _i l+ky _x

-- _V -- 3U 2 _U k

_v_ - my_ - v _ + 1+k---_

_(d2__2)u _ _v) + l+ky_3 (l+ky 3_ + _7-)

m

i _ 2 _uv i

+ l+ky_x {(_3+_)(l+_y_x + _ + _ _2

+_ {(_+_)( + _ + +

w

I:(_+_)( 1 _l+ky _x

_UW _UV . k

+ _ + gf-)_+ _+_---7{(_3+_)
I

(_¥_y_ + _ _ _ _ _+_y[(q$3+v) l _u _.

i i _v_ _#.
+ 17_y_ f:__¥_y_ + _-_--_

3 k qZ3 8u 2

2 l+ky l+ky _x
(_-m3)

Invoking the two dimensional boundary layer approximations, and

in addition_ the boundary layer thickness is assumed to be very much

s_ller than the radius of curvature of the surface, such that 5_(x) << I

then the coefficient i + ky can be approximated by i . With these
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simplificat ions

D_ 2 _ ;5u2 ]

_u 2 ] 1 q.

+ 2k ((_3+_)_]

3
- 1J) 2%('-$ - _ - 7_

_U
2 uv -- - 2k uvU

_y

--2 _v 2 2 _J k( _U2)
Dv _ 1:3(_3+") _ 7 _2 ) - _3

m

"k[(q/3+v)<_-7-- 3 )] - -- (v - -5 _i 3

2 q3
. -- -- + 4k uvU

3A

(E-14)

(s-z5)

D7 = _YY [('c_3+v) _---_] + k [(.q#3+v)

3

-ili -i _ ) 3 ^

buy _ _2(._ _+,.,) _--TJ
Dt _Y

5u2
_uv + k(cz_3)+ _( _ _+_)_-_

m

* _ Sx 3 _-i _v - _ * v2)u

(E-Z6)

(E-IV)
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DELS (IN)

]','t ]_I, i-' 1

CONSTANT PgES:;UL, E FLO_ _ AI, LIN(; CO:;VYX W,',LL

(It;) -= 24.o0 !, (i_) =
O. 9_3 TIIk'TA(1;4) = 9.05_ UPW (i'T/SEC) =

Y (r:_) u (!. 'r/s t:'.c)
0.00_ 23. q]

O. ('.'6 2E. 29

O.()O_ 30. 13

',).O10 33._I

0.012 35.19

0.01_4 36._3

0.01 _) 39.3_

0.02u, 0, 0.,_2

0. 029 U2.3U

0.C34 a3. 15

0.039 U3.92

0.044 tl0,.72

0.054 a5.81

9. 064 47. 16

0. 074 48.12

0. 094 4g. 24

0. 094 50.1 3
0.10_ 50.69

0.124 52.41

0. 144 54. 15

0.16/$ 55.96

0. 184 57.06

0. 204 58. _0

0.224 59.82

0.244 61.11
0.26_ 62. _0

0.28/-I 63.20

0. 304 6/4.20

0. 324 65.0q

0.340, e5.9b

0. 360, 66. 76

().38_ 67._]8

0.404 (;7. f_l

0.459, 68.77

0.50q 6q. _0

0.554 69.97

O. 60_ 70. I 2

0.05'_ 70.27

0.700, 70.27

0.750, 70.27

0.800, 70. ?7

0.850, 70. 27

0.q00, 70.27

0.95[_ 70.27

1.000, 70.:? I

1. 1'<,4 70. 27
1. 204 70.27

1.3(i_$ 70. 27

I. 40_ 70.77

1._'u 70. 27

1.600, 70.27

1.700, 70.27
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66.05

66.1*7

66. g_t;

b7. 17

_7. li9

t,8. _ 4

69.11
6q._6

70.4_

71. !5

71.70

72.O5
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0.125

0.0(;4

d. 0O6

0.00_

0.010

0.012

0.014

0.01')

0.02_

O.02q

0.034

0.039

O.Oq:_

0.054

0.064

0.07'4

O.OR4

0. 094

O. 104

0.124

0.144

0.164

0.184

0.204

O. 224

0.244

0.264

0.284

O. 3Oft
O. 324
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0.404
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0.604
O. 654

0.704
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CONSTANT

× ( [NI =
0.130

_(rN)
O. 004

O.Or6

0.008

0.010

O.01Z

3.014

0.019

0. 024

0.029

0. 034

0.039

0.044

0.054

0.064

0.074

0.084

0.094

O. 104

O. 124

0.144

0. 164

0.18_

0. 204

0.224

0. 244

0.264

O. 284

O. 304

0. 324

0. 344

O. 364

O. 384

0.404

0.454

0.504

0. 554

0.604

0.654

0.704

0. 754

0.804

0.854

0.904

0.954

1.00_

1.104

1.204

1.304
1. 404

1.504

1.604
I. 704

I ABLE ')

Fk_E!';SUF3 }:LOW ALONG

%q.O0

T;!hTA (IN) = 0.093

CONVEX _4ALL

u_w (vq/SEC)
!J(FT/S _C)

23.05

27.93

32.0,%

35.15
36.8_
39.00

40.39

41._32

42.7u,
43.31
44.21

_5.68

47.27

48.43
49.65

50.8_

51.77

53.99

55.62

51.61
58.70

60.16

61.45

62.21

62.97

63.74

64. 22

64.83

65.31

65.88

66.25

66.77

67.67

68.63
69.48

70.2,8

71.00

71.6]

72. 10

72.37

72.41

72.23

71.99

71.72

71.15

70.5_

69.93

69.35

08.76

68.16

67.57
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0.006

0.0C8

0.010
0.012

0.01tI

0.019

0.024
O. 029

0.034

0.039

0.0_4

0.054
O. 064

O. 074

0.084

0.094

0.104
0.124
0.144

0.164

0.18_
0. 204

0,224

O. 244
0. 264

0.284
O. 3O4

0.324
0.344

0.364

O. 384

0.404

0.454

0.504

0.554

0.604

0.654

0.704
0.754

O.flO_

0.854
0.904

0.954
1.004

I. 104

1.204
I. 304
1.404

1.504

1.604
1.704

TABLE 6

I..RFS.qi'II_.E FLU,,I ALONG

x(_N) = c,3.oa
TI_FTA (IN) -- O.OqU

CONVEX WALL

t,(IN) =

llPW (FT/.qEC) =

u (FT/S_C)
18. _J1

20. O5

23.50
27.51

30. _18

32.82

36.27

38.28

39.82

40.91

42.29
42.93

44. [17
;45.66

46.85

48.02
49.32

50.16
51.86

54.33
56,13

57.64

59.15

60.40

62.17

63.09

64.23

65. O3
65.53
66.09

66.57

67.20

67.64

68.50

69.60

70.19

71.08

71.8]

72._I

72.77

72.86

72.78

72.61

72.3 b

72.08

71.52

70.97

70.41

69.83

69.2,8

68.69

68.11

11.8u0
78.66
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STATTON
DELS (iN)

CONSTANt

0.146

0.00_

0. O06

O.OOR

0.010

0.012
0.014

0.019
0.024

0.029

0.0.34
0.039

0.044

0.054

0.0(_4

0.074

0.084

0.094

O. 104

O. 124

O. 144

O. 164

O. 184

0.20_

0. 224

O. 244

0.264

0.28_

0. 304

0.324

0.344

0.364

O.384

O. 404

0.454

0,509

0.554

0.604

0.654

0,704

0.754

0.804

0.854

0.904

0.954

1.004

1.109

1.20tl

1.304

1._04

1.504

I. 60a

I .704

TABLE 7

I,_£:_5UHE FLOW AI,ONG

X (IN) = 67.00

THETA (IN) = 0.10,9

C(1,IVE X WALl,

i_(IN) =

_Dw [F r/ZEC) =

U (FT/S EC)
25. 35
25. _0

27.80

30.17

32.13

33.54
35.86

37.3g

38.79

39.71

40.116

'a 1. u,9
42.53

43. BO
L14.5_

45.58

116.66

47.80

_9.4,

51.27

52.97

54.53

56. _2

57,86

59.36

60.73

61.93

63.23

64,12

65.02

66.00

66.[15

67.10

68.47

69.63

70.48

71.29

71.85
72.36

72.83

73.03
73.10

72.9R

72.77

72.52

72.02

71.53

71.04
70.55

70.C5

69.5_

68.99
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11

O.

TAL_I,H 8

CONSTANT PPESq(J_E FLOW ALI)_G CONV[':_ _ALL

:<(IN) = 71.@'J ,_;(TN) =

155 T!IETA(IN) = O. 10_ I]PW(FT/SEC) =

y (T_) . (_T/S_C)
0.004 22._;I

(). 0 t) 6 2 u,. ti 9

0.I]08 2b.50

0.010 30. 32
0.012 32.23
O.0111 33. I0

0.019 35.3J

0.02_ 37.01

0.029 38.07

O. 034 3g. 23

0.03q /40. *34

O.O_U, 40.o0

0. 054 42.04

0.064 42.98

O.07LI 43.93

0. 084 44.91

O. oq_ 45. R/4
O. 104 /46.89

0.124 /48.56

0. IL14 50. 13
O. 164 51.8/4

0.184 53.01

0.20/4 54.73

0. 224 56.17

0.244 57.45

0.26/4 59. IR

0. 284 60. 11
O. 3O/4 61.39

0.324 62.66

O. 344 63.61
0. 364 6/4.66

0. 384 65.60

0.404 66.33

0. 454 68. O0
0. 504 69.31

O. 554 70.23

0.604 71.02
0.654 71.86

0.70LI 72.47

0.754 72.82

0.804 73.13

0.85/4 73.20

0.9C4 73.12

0.Q54 72. 95

I. 00/4 72.7

I. I0_ 72.22

1.20/4 71.72

1.304 71.22

I ._04 70.73

I. 504 70.2 1
1.604 69.6g

1.70/4 69.15
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STATION

Y(I

0.70

0.60

0.50

0.40

0.35

0.30

0.25

0.20

0.15

0.13

0.11

0.09

0.07

0.06

0.06

0.05

0.04

0.03

0.02

TABLE

CONSTANT PRESZII|;E FLO_

X(IN) : 24.00

9

ALONG CONVEX WALl.

_(IN)

N) U**2 V_2 W**2 UV UW

0.176 0.053 0.026

0.256 0.1_5 0.080

0.893 0.913 0.526

4.97_ 2.388 2.755

8.278 3.113 5.065

11.396 4.586 6.813

1_.743 6.243 8.588

17.117 8.408 10.028

19.664 9.890 11.007

20.520 9.613 11.447

21.4U3 10.156 11.979

21.917 9.651 11.620

23.085 8.512 12.649

23.466 10.602 12.320

23.466 12.320

23.926 12.488

24.293 12.752

25.527 13.105

27.932 13.151

-0.001

-0.024

-0.379

-I .902

-3.026

-4.183

-5.492

-6.62 6

-8.035

-7.923

-7.842

-8.057

-7.781

-8.210

0.004

-0. 006

-e. 005

O. 108

0.155

0. 247

0.328

0. 107

0. 235

0. 195

0.447

0..52

0.218

0. 384

O. 384

0. 305

0.511

0.023

0.051

0.0

VW

0.0

0.0

0.0

O.G

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
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STATION 7

TABLE

CONSTANT PRESSURE FLOW

x(T_:) = 59.00

10

ALONG CONVEX WALL

B, (TN) = 11.%20

Y (IN) U**2 V**2 W**2 UV UW VW

1.59

1.30

1.1O

0.90

0.70

0.60

0.50

0.40

0.35

0.30

0.25

0.2O

0.15
0.13

0.11
0.09

0.07

0.06

0.06

0.05

O. 04

0.03

0.02

0.138 0.018 0.055 -9.002 0.003

0.151 0.020 0.063 -0.00_ -0.007

O.ISq 0.127 0.09_ -0.006 -0.013

0.326 0.666 0.294 -0.012 -0.014
1.867 2.079 1.213 -0.210 -0.005

3.575 2.281 2.175 -0.395 0.072

4.309 1.912 3.211 -0.490 0.189

4.988 1.913 3.855 -0.538 0.224
5.495 2.015 4.106 -0.721 C.315

6.051 2.486 4.625 -0.935 0.329

7.309 4.916 4.998 -1.444 0.470
9.795 4.293 6.244 -2._58 0.670

11.967 7.664 7.389 -3.781 0.593

12.967 7.435 8.250 -4.166 0.673

14.001 8.662 8.336 -4.519 0.437

1_.532 9.469 8.53_ -4.884 0.520

14.977 9.015 8.759 -4.999 0.322

15.200 8.120 8.784 -5.053 0.345

15.200 8.784 0.345

15.513 8.642 0.295

15.479 8.614 O.371

16.08q 9.021 0.325

16.533 8.653 0.252

0.0

0.0

0.C

0.0

0.0

0.0

0._

0.0

0.0

0.0

0.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0
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STATION

TABLE

CONSTANTP_ESSUhEFLOW

X(IN) = 67.00

11

ALONG CONVEX WALL

12. 820

¥ 11:I) U*_2 V*_2 W_#2 UV UW VW

0.428 0.016 0.364

0.388 0.043 0.307

0."00 0.200 0.333

0.536 0.888 0.415

I .994 1.708 1.254

2.973 1.816 1.608

3.512 1.952 2.12_

4.013 3.196 2.631

4..737 5. 047 3. 153

6.081 6.516 4.037

8.646 9.081 6.02_

10.827 8.723 7.505

13.563 10.292 9.388

14.514 9.408 9.955
15.564 10.424 10.240

16,.109 9._04 10.203
16.506 8.441 10.179

16.520 7.357 10.442

16.520 10.4_2

lb.868 10.417

17.063 10.445
17.696 10.379

18.699 10. 167

1.50

1.30

I.I0

0.90

0.70

0.60

O.50

O.40

0.35

0.30

0.25

0.20

0.15

0.13

0.11

0.09

0.07

0.06

0.06

0.05

0.04

O.O3

0.02

-0. 136

0.001

-0.016

0'.027

0.095

0.209

0.245

O. 285

0.27_

O. 131

-0. 122

-0. 125
-0. 244

-0. 180

-0.212

-0. 122

O. 105

0- 094

0.094

0. 007

0. 009

0.011

0.063

0.059

0.064

0.051

-0.002

0.027

0.200

0.340

-0.230

-0.867

-1.846

-3.242

-4.197

-4.526

-4.641

-4.857

-4. 697

-_. 950

-5.843

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

O. 0

0.0

0.0

0.0

0.0
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STATIO

Y

N 11

(IN)

1.50
1.30
1.10
0.90
9.70
0.60
0.50
0.40
0.35
0.30
0.25
0.20
0.15
0.13
0.11
0.09
O.07
0.06
0.06
0.05

0.04

0.03

0.02

TABLE

CONSTANT PHESSUHE ["LOW

X (IN) = 71.00

12

ALONG CONVFX WALL

',,'(IN) = 12.820

0.426
0.4O4

0.4,01
0.182

0.115

0.242
0.209

-0.313

-0.854

-1.94_

-3. 097

-4.328

-5.383

-5,478

-5.870

-5.817

-5.741

-5.518

-0. 015
0.046
0.072

-O.023

0.052
0.133

0.134
O. 055

-0. 182

-0. 323
-0.451

-O. 4U6

-0. 488

-0. 699

-O - 382

-0.500

-0. 298

-0. 332

-0. 332

-0. 20O

-0. 006

-0.215

0.169

C.876 1.911 1.121
0.733 1.620 0.857

0.710 1.361 0.681
0.820 1.117 0.761

2.098 1.539 1.424

2.632 1.775 1.746

2.900 1.920 2.100

3.207 2.604 2.363

3.676 2.757 2.758

4.681 5.028 3.097

6.497 6.950 4.157

9.927 8.916 5.606

12.951 9.478 8.078

13.903 10.100 8.505

15.193 9.762 9.329

15.515 9.956 9.565

15.915 10.581 9.098

16.086 8.444 9.433

16.086 9._33

16.17_ 9.607

16.337 9.696

16.743 9.263

17.635 9.603

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

O.O

0.0

0.0

0.0

0.0

0.0

257



STATION
DELS(IN) 0.095

Y(Ir:)
0.004
0.006
0.008
0.010
0.012
0.014
0.019

0.024
0.029

0.034

0.039

0.044
0.054

0.064

0. 074
0.084

O. 094
O. 104

O. 124
0.144

O. 164
0.184

0.20LI

0. 224

0.244

0. 264
0. 284

0.304

0.324
0. 344

0.364
O. 344

0.404
O. 454

0.504

O. 554
0.604

0.654

0.704
0.754

0.804

0.854

0.904

0.954
I .004

1. 1()4
1.204

1.304

I. LI04
1. 504

1.604
1.704

1.804
1._04

2.004

TABLE

SEPARATING FLOW

X (Ill) =

THE TA (IN)

13

238

ALONG

24.00

= 0.O6%

CONVEX WALL

R([N) =

UPW (FT/SEC) =

U (FT/S EC)
21.91

25.61_

29.57
32.47

34.71

36.13

38.99

40.39

41.82

42.93

43.75

44.73

45.82

47.12

48.15

48.96

49,69
50.50

51.82

53.28

54.43
56.11

57.31

58.96
59,79

_,0.95

62.18

63.26

64.31

64.98

65.68

66.36

66.97

68.14
69.01

69.63
70.05

70. t,9

70.76

70.8_

70.95

70.95

70.95

70.95

70.95

70.45

70.95

70.45

70.95

70.95

70.95

70.95

70.95

70.95

70.95



S EPAt_ ATI NG

X (iN)
0.118

Y (IN)
0.0<)4

O. Of_6

0.00_¢

0.010

0.012

0.014

0.019
3.024

0.029

0.034

0. 039

0.044

0.054

0.064

0.074

0.084

0.094

O. 104

0.124
0.144

0.164
0,184

O. 204
0.224

0.244
0.264

0.284

O. 304
0. 324

0. 34U
O. 364

0. 3R4
0.404

0.454

O. 504

0.554

0.604

0.654

0.704

0.754

0.804

0.854

0.904

0.954

1. 094

1.104
I. 204

1.304

1,404
1.504

1.604

1. 704

1. _()4

1.9(_4
2.00_

TADLE

PI,(3W

TUETA (IN)

14

A LO NG

52.50

= O. _87

CONVEX WALL

t,_(IN) :

UPW(FT/SEC) =

U (I_T/S FC)
25.17

27.52

30.71

33. 30

35.3.1

36.91

40.72

42.21

a2.92
44.42

45.13
45.86

47.33

4q. Pq

50.42

51.62

53.26

54.31

56._0

57.86

59.07

60.11

60.94

61.72

a2.18

62.79

63.25

63.81

64.22

64.74

65.25

65.71

66.18

67.20

68.00

68.99

69.73

70.32

70.76

70.99

71. Iq

71.07

70.91

70.6]

70.3_J

69.68

h9.02

68.37

67.7]

67.09

66.46

(,5. FIll
65.22_

64. h 1

64.00

I0.=o0
77.3_
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STATION

DELS (IN) •

T_BLE 15

S]_PA_(ATING FLOW ALONG CONVEX WALL

X(IN) : 54.50 If(IN) =

153 T[[ETA (IN) = O. 105 UPW(FT/SEC) =

Y (IN) U (FT/S FC)
0.O94 20. 95

0.006 22. 33

0. 008 23. 37

0.010 24.77

0.012 26.98

0.014 28.55

0.019 31.82
0.024 33.49

0.029 34.93

0.034 35. Q8

O, O39 37.09
0.044 37.98

0.054 39. 13

0.064 40.71_

0.074 41.91

0.084 _3.18

0.094 4;-1.29
O. 104 45.50

0.124 47.57

O. 144 49.80

0.164 51.4LI
0.184 53.07

0.204 54.59
O. 224 55.73

0. 244 56.68

0.26_ 57.4R

0. 284 58.17

O. 304 58.85

0. 324 59.49

O. 344 60.01

0.364 60.51
O. 384 61. OG

0. 404 61.55

0.454 62.74

O. 504 63.75

0.55LI 64.70

O. 604 (;5.59

0.654 66.46

0.704 67.12

0.754 67.71

0. 804 68.14

0.854 68.33

0.9_ 68. 39

0.954 h8.27

1.004 68.04

I. 104 _7.42

1 • 204 66.89

1.304 66.19

1. 404 65.58

1 • 50_ 64. g9

1.604 6/4.39
I. 70LI 63.80

I .HO4 63.22
I .904 62.64

2. 004 62. C7

10. R90

74.61
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SEPAI_A_IL_;

X (_:_)

0.197

Y (i_)
0. On4

0. 006

0. 008

9.010

0.012

0.01_

0.010

c). 02_

0.029

0.034

0.039

0.0_4

0.054

0.064

0.074

0.084

0.094

0.104

O. 124

0.1_

O. 164

O. 184

0.204

0.22_

0.2a4

0.26_

O. 284

0.304

O. 324

0.34q

O. 364

0.38 _l
0. [104

0.454

O. 504

O. 554

0.604
0.654

0.704

0.754

0.804

0.854

0.904

0.95_

1.004

1. 104

1. 204

1. 304
1. 404

1.50a

I. 6()_
1.7t4

I. £04

1 . _04

2. O0 4

TAI3L _: I:_

FLO_ ALON(] CONVEX

: 56.50

TI_hTA(IN) : (>. 121

WALL

?(IN) :

U[_W (FT/SEC) =

u (_T/S re)
18. r,()

20. _5

21 . '40

23. <)_

2_.26

25. ]b

26.73

28. _8

2q.36

29.6q

30._7

31.07

32.24

33.41
34.82

35.66

_6.5q

37.62

39.94

_11._3

43.19

t_5. C,9

Q6.68

48.53

_9.69

51.07

52.09

53. n8

54. 14

54.73

55.57

£6.09

56.70

58.08

59.26

_0.3_

61.28

62. 28

63.17

63 • 98

64.73

65. 36

65.67

65.85
65. 91

_5.53

6;4.94

6_. 37

63.79

63.23

62.67

62.11

61.56

61.01

60.47

_41

II.200

72. 32



STATIO:_
DELS(IN}

7

T_BLE 17
SEPAEATINGFLOWALONGCONVFX WALl.

X(IN) = 59.0¢_ E(IN) =

0.276 THETA (IN) = 0.162 UP4 (FT/SEC) =

[ (IN) tJ(_ r/S_:C)
O. 004 16. (}1

0. 006 17. _0

0.0O8 17.54

0.010 18.78

0.012 19.51

0.014 20.4<)

0.019 21.13

0.024 21.90

0. 029 22.42

0.0_4 22.93

0.039 23.69

0.044 23.91

O.05LI 24.86

0.064 2.5.53
0. 074 26. 18

O.OB4 26.96

0.094 27.13
O. 104 27.97

0.120, 29.62

0.144 31.06

0.164 32.78

0. 184 33. q2

O. 204 36.05

0. 224 37.1 5

0.244 38.99

0. 264 40.22

0. 284 _ 1.60

O. 304 43.02

0.324 "4.14

O. 344 45._0

0.364 46,39

O. 384 47._8

0.404 48.05
0. 454 50.13

0.504 51.47

0.554 53.09

0.604 54.31

0.654 55.28

0.704 56.49

0.754 57.35

0.804 58.29

0. 854 59.33

0.g04 60. 14

0.95_ 60.87

I. 004 61.52
I. 104 61.89

1. 204 61.90

1.304 61.40
1.404 _0.87

I. 504 60.30,
1.604 59.82

1.704 59.30

1. 804 58.79

1.904 5_. 28

2.004 57.78
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S EPAh ATI NG

× (I'_)
0 .3ni

Y(IN)
0. 004

0.006

0.00_

0.01,9

0.012

0.014

0.0t9

0.024

0. 029

0.034

0.039

0.044

0.054

0. 064

0.074

0.084

0.094

0.104

0.124

0.144

O. 164

0.184

0.204

0.224

O. 24U

0.264

O. 284

O. 304
O. 329

0.344
O. 364

O. 384

0.404

0.454

0.504

0.554
0.604

0.654
0.704

0.754

0.804

0.854

0. 904

0.954

1.004
1.104

I. 204
1.304

1.404
1.504

1.609

1.704

1.804

I .904

2. 004

T _ l_L l; 1 8

FI, O_ ALONG CONVF)[

THITA (IN) - ;3.212

NAT, T,

r,(IN) =

UPW (FT/SEC) =

i.v (YTIS _C)

15.33

15.28

15.71

16.13

16.61

16.86

17.96

18.81

18.q7

19.46

19.36

19.71

20.15

20.28

20.82

20.95

21.42

21.71

22.56

23. 38

24.32

25.53

26.16
27.51

28.5@

29.24

30.69

32.01

33.24

34.31
35.60

36.74

37.52
40.23

42.72

44.52
46.16

47.30

48.54

49.58
50.53

51.31

52.20
52.99

53.85

55.51

57.07

58.00

57.99

57.76

57.27

56.79

56.32

55. fi@

55. 97
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STATION

DELS (IN)

11

S EPA_2ATIN';

X (IN)
0.485

Y(T_)
0. O04
0.006

O.OOd

0.010

0.012

0.014

0.019

0.024

O. 029

0.034

0.039

0.044

0.054

0.064

0.074

0.084

0.094
O. 104
0.124

O. 144

0.164
0.184

0.204

0.224

0.244
0.264

O. 284
O. 304

0.324

0.344
0.364

0. 384

0. 404

0.454

O. 504
0.554

0.604

0.654

0.704

0.754

0.804

0.854

O. 904

0.954

1.004
I. I04

1.204
1.304

1'. 40_

1.504

I .60_

1.704

1.804

I .gO4
2.004

TABLE 19

FLOW ALONC, CONVE_

= 66.0:_

Ti!ETA (IN) = 0.233

WALl.

[(IN) :

UPW (FT/SEC) --

I] (FT/S EC)
11. :19
11.3LI

11.28

11.23

11,17
11.12

10.98

11.93
12.01

12.59
13.34

13.86
14.00

14.65
14.44

14.66

15.04

15.25

15.88

16.37

17.48

18.40

19.52

20. z2

21.20
22.30

23.24

24.35
25.26

26. 38

27.78

28.97

29.83

32.44

35.39

37.82

39.89

41 .H9

43.52

_5.00

45.88

47.08

47.93

48.88

49.50

51.1_
52.5]

5_.01

55,08

55.69

55.54

55.31

54.b8

54.26

53.8_

244



STATION

DELS (I_;)

12

0.608

SEPAE _TINC,

x (IN) =

TiikTA (l N)

Y(I_)
0.00_

0. I]06

0.008

O.01q

0.012

0.01_

0.019

0.024

0.029

0.034

0.039

0.0_4

0.05_

0.064

0.074

0.084
0-094

O. 104

0.124

O. 144

O. 16u,
0. 184

0. 204

0.224

0.21_4

0.264

0.284

0,304
0.324

0. 344

O. 364
0.384

0.40_

O. 45LI
0.504

0.554

O. 604

0.654

0,704

0.754
0.804

0.854

0.904
O. 954
1.004

I. 104

1. 204
1.3O4

1. 404

1. 504

1.604

1.704
1.804

1.904
2.004

T&i_I,? 2',)

f'LOW ALONG CONVZX WALl,

b9.50 _ (IN) =

: 0.27_% UPW (FT/SEC) =

u (_T/S PC)
13.04

12.99
12.95

12.90

12.83
12.91
12.70

12.5_

12.66
13.03

13.1,'.)
13.1,3

13.05

13.93
13.72

13.51
13.75

14.07
14.53

14.48

14.51
14.96

15. _J1
15.58

16.24

16.86

17. 19

17.71

18.6_

19.05

19.91

20.85

21. 34

23.38
25.64
27.95

30.32

33. 17

35.58

37.69

39.40

41.07

42.59
43.9O
45.09

46.77

U8.25

49.58

50.85

51.93

52.S5

53. _:q

53.22

52.92

52.51
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STATION

¥(I

I

TABLE

SEPA!_ATINGFLOWALO

x(I_) = 24.o0

WAI.I.

[<(IN) 0.0

U_*2 V_2 W*_2 UV UW VW

-0.001

-0.001

O. 0

C.003

0.00r,

0. 020

0.03q

0.113

O. lOa

0.045

0.0_5

-0.06 3

-0.091

-0. 070

-0. Oa6

-0.07_

-0. 139

-0. 139

O. 029

-0. 030

-0.081

].00 O. laG 0.057 0.006 -0.010

1.00 0.158 0.057 0.006 -0.010

O. qO 0.173 0.080 0.020 -0.031

0.80 0.214 0.097 0.060 -0.051

0.70 0.408 0.286 0.189 -0.102

9.60 1.591 1.094 1.067 -0.536

0.55 3.294 1.643 1.82q -1.236

0.50 5.559 2.883 2.696 -2.052

0.45 7.7_B 3.361 4.619 -2.878

0.40 9.800 4.411 6.456 -3.750

0.35 13.524 5.400 7.712 -4.649

0.30 15.5q6 6.608 9.443 -5.559

0.25 17.27u 7.102 10.091 -6.516

0.20 18.470 8.608 10.667 -7.223

0.1q 21.140 9.102 11.097 -8.116

0.10 23.306 9.192 12.176 -8.245

0.05 24.760 8.902 12.206 -8.135

0.05 24.760 12.20b

0.04 25.414 12.859

0.03 28.137 13.503

0.02 28.788 14.528

O. 019

0.019

0.023

0. 024

-O.OOa

-0.115

-0.277

-0.19C

-0.254

-0.222

-0.371

-o.ao9

-o._76

-o. 496

-0.32(>

-o.23_

-0. 191
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STATI O'4 4

TABLE 22

SEPA[_ATIN(; FLOW ALO_IG COt,'VEX WALL

X{IN) : _4.50 _{[N) = 10. _90

Y (IN) U*_2 V**2 g**2 UV UW VW

l.zlO

I .20

I. ,!9

O.qO

0.80

0.70

0.60

O. 50

,).40

0.30

0.20

0.15

0.I0 1

0.05 I

0.05 I

0.02 I

0.159 -0.384 O.Ob9 O. 2_19 t.O07

0.250 -0.212 0.19] 0.193 0.029

[_.9cI 0.24._ 0.751 _. 'b', 5. 16,_
2.026 1.159 1.609 O. _I_ 0.671

3.011 1.574 1.859 0.413 0.505

LI.019 2.180 2.656 0.355 0.772

4.95LI 2.793 3.25_ 0.161 0.583

5. _,60 3.295 3.651 -0.234 0.532

5.899 2.7ai 3.9_3 -0.035 0.480

6.132 2.841 4.067 -0.187 0._96

6.945 2.558 4.754 -0.5L14 0.239

8.450 3.232 5.750 -1.307 -0. 127

2.718 2.622 7.542 -2.113 -0.335

4.740 5.136 9.608 -3.933 -0.778

4.740 9.608 -0.778

2.602 5.73_ -0. 265

0.019

0.095

6.4 I, .L
O. _1_'t1

1.19ti
I .000

1.393

I. 132
1.0612

1.035
0.907

1 .LI20

O. 9118

1.205
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TABLE

SEPAiIATINC, FLOW ALl)

STATION 9 X (IN) = 62.50

Y (IN) IJ**2 V**2 W**2

2.00

1.80

1.60

1.40

1.20

1.00

0.90

0.80

0.70

0.60

O.5O

0.40

0.30

0.20

0.10

0.05

O.O5

0.02

0. 350 -0. 347 0. ]H8

0.358 -0. 172 0.243

0.381 -0.283 0.156

0. 532 0. 065 0. 250

1.221 0.39'4 0.813

2.402 1.101 1.643

2.830 0.797 1.955

3.250 0.713 2.152

3. 653 O. 992 2. 372

4.351 1.213 2.863

6.795 I. 262 4. 220

1.144 2.660 7.169

4.963 3.885 9.820

5.452 4.560 9,944

2,169 4.325 7.226

9.967 3.011 6.137

9.967 6.137

9. 166 5.105

23

NG CONVEX

UV

0.41"I

0.427

0.352

0.'401

0.146

-0.086

-0.082

-0.073

-0.273

-0.4'42

-0.709

-2.1'42

-3.366

-4.672

-3. 187

-2. 295

_ALI.

P(IN)

UW

C. 006

0.007

0.¢09

0.019

-0. 139

-0. 275

-0.44 u

-0.548
-0.60R

-0.616
-0. b25

-0. 483
-0. 408

-0. 257

-0. 186

-0.060

-0. O60

-0. 102

= 1 1. _14C,

VW

C. 18%_

0.172

O. 163
0.283

0.5U9
0.U56

0.290

0.196
0.086

0.00_
0.189

0.70¢>

1.100

1.781

0.5_)q

0.452
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TABLE 2_

STATION tl

SEPARATING

× (IN)

FLOW ALO

= 66.00

NG CONVEX WALl.

P(IN)

Y (IN} U*_2 V**2 W**2 UV UW

12. 820

VW

2.00 1.207 -0.302 0.565 0.625 -O.02q 0.501

1.80 I .137 -0.272 0.454 0.878 -0.02q 0.383

1.60 I .041_ -0.541 0.331 1.012 0.003 0.227

1.40 1.469 -0.557 0.634 1.399 0.002 0.276)

1.20 2.569 0.909 1.388 0.651 -0.286 0.482

1.00 3.317 1.097 1.934 0.191 -0.618 0.341

0.90 3.526 1.203 2.165 0.045 -0.708 0.471

0.80 3.042 0.979 2.570 -0.079 -0.745 0.[;17

0.70 5.196 1.787 3.a80 -0.648 -0.623 0.631

0.60 7.905 1.828 5.018 -0.902 -0.345 0.967

0.50 11.354 2.793 7.103 -1.874 -0.063 1.196

0.40 14.703 4.580 9.557 -3.325 0.022 1.702

0.30 15.509 5.090 10.366 -3.874 -0.057 1.66[;

3.20 14.560 4.263 8.410 -3.356 0.026 1.040

0.10 10.682 3.460 6.967 -2.503 0.150 0.999

0.05 8.857 2.561 5.543 -1.727 0.187 0.262

0.05 8.857 5.543 O. 187

0.02 7.778 4.280 O. 165
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STATION 12

TABLE 25

SEPARATINC, FLOW ALONG

XIIN) = 69.5')

CONVEX WALL

P(IN) = 12. H2C

Y (IN) IJ**2 V**2 W**2 llV UW VW

4.113 1.2_ 1.892 2.325

3.603 1.489 1.244 I.q93
3.103 1.450 1.16q 1.530

3.499 0.66_ 1.522 I._81

3.907 1.925 2.132 0.557

_.495 2.405 2.991 -0.2g9

5.858 2.38g 4.045 -0.859

8.502 2.153 5.826 -1.176

1.985 3.142 7.322 -2.208

5.402 2.710 9.762 -2.816

7.019 5.309 11.581 -4.279

7.899 3.601 11.06_ -3.190

6.634 2.981 11.354 -3.215

4.53_ 3.286 8.707 -2.726

0.651 4.211 6.083 -2.973

0.651 6.083

9.295 5.005

5.511 2.411

-0. IU7

0.023

-0.082
-0. ]45

-0.691

-0. 685

-0.58

-o.a11

-P. 1 53

-0.493

-6. 507

-0. q21

-I. 25a

-0.925

-0. 623

-0. 623

-0.514

-0. 287

2.00

1.80

I. 60

1.40

1.20

1.00

0.90

0.80

0.70

0.60

0.5n

0._0

0.30

0.20

0.10

0.10

0.05

0.02

1.839

1.428

0.980

0.774

0. 752

0. 613

0. 1_

0.5(,0

0. 885

2.177

2.080

2.218

2.786

2.603

1.]11

25o



STATI ON

DELS (IN) 0 •

rAULZ

CONSTANT PRB_S!II<_ FI,O_

X(I_) = 24.0:)

087 TIIl"J.'b.(I:l) =

0.006

0. O UH

0.0 10
0.015

0.020

0.025

O. 0 30

0.035

0.0_0

O. 050

0.060

0.070

O.OqO

0.090

O. 100

O. 120

0.140

O. 160
0.180

0.200
O. 220

O. 24O

0.260

0.280
O. 300

O. 320
O. 3_0

O. 360

O. 380
0.400
0.450

0.5O0

0. 550

O. 600

0.650

0.700

0.750

O.gO0
O._qO

2b

A LO NG

9.00 2

COt:CAVE ':ALL

P (IN) :

.VW(PT/SEC) :

II(FT/S EC)

25. qO

29.0 ')

32.7/

30.96

39.15

(_0. 64

41.84

42. _

43.93

45. 33

q6.52

47.82

(,8.91

50.01

50. HO

52.20

53.8q

55.39

57. 1S

58. 18

59. 77

61.06

62.0b

63. t16

t,4.05

65.05

65.75

6b.64

67.1U

67. 6_

68.5t_

69. 23

6q.7_

70. 1:_

70.23

70. 3

70.53

70.63

70.63

2%



STATION

D%LS (IN)

CONSTANT

x (TN) =

0.299 TIiFTA (IN)

Y(IN)
0. O08

0.010

0.015

O. (>20

0.025

0.O3_

0.035

0.0_0

0.060

0.080

0.100

0.130
0. 160

0. 190

0.220

O. 250
0. 280

0.310
0. 340

0. 370

0._00

0.45O

O. 500

0.550

0.600

C. (,50

0.700

0.750

0.800

0. 850

0.q00

D.qSO

1.000

I. 100

I. 20()
I .300

1.U00

1. 500

1. 600

I .700

I. 80O

I .9]D

2.000

2.5')0

3.000

TABLE 21

F[,}.,S(3U[<r' FLO_' AL()N,;

7O. O0

= O. 235

C,_NCAV E ^ALL

I- (IN) = -17. ;_]0

UI'W {F:r/SEC) -- 6] .20

u (_T/S_C)
33. lq

34._3

36. (,_

3B.11

39.0 3
39.85

40. _7

:_0. 98

42. _1

43.2O

43.95

44.68

45.'4q

46. O0

46.51

_6.32

47.23

47. %4t

47.95

.8. _6

48.77

49.48

50.10

50.40

51.02

51 .a3
52. (,tl

52.45

52. _6

53.48

g4. C,q

54.5O

57. _7

_0. 14

6 1 . q _
_,3. _I

_,4.54
65.' 7

66.09

67._1

70. tg

72. _

252



STATION
DELS(IN)

TABLE
CONSTANT['FESSIJREFLOW

×(IN) : 70.00
0.200 THETA(IN) =

Y(IN)
0.00_
0.CI0
0.015
0.02O
0.025
O.U30
0.035
O.04O
0.060
0.080
0. 100
0.130
O.160
0. lqO
0.220
0.250
0.280
0.310
0.340
O.370
O._00
0.450
0.500
0.550
0.600
0.650
0.700
0.750
O.8OO
0.850
0.900
0.950
1.000
1.100
1. 200
1.300

I. aoo

I. 500
1.ooo

1.700

1.800

I .900

2. 000

2.500

3.000

28

ALONG

0.15_

CONCAVF ,_ALL

_'(IN) = -17.,q30

UPW (FT/SEC) : 61.20

u (_T/S EC)
_1.18

32.70

35.52

37._u

_8.45

39.26

39.76

40. 37

_I .78

_2.89

_3.60

4_.41

44.91

_5.52

46.02

46.42

47.03
_J7. u,3

47.84

48.24

48.85

49.55

50.66

51.64

52.68

q3.99

55.10

56..21

57.43

58.43

59.2_

60.45

61.46

63.28

_14.59

65.50

_6.00

66.31

66.71

67.01

67. 32

67.72

q8. 32

70.55

72. Q7

253



STATION

DELS (fN)

TABLE

CONSTANT |'t_ES.';URv] FLO_I

X(IN) : _6.0o
0.25o TH_ TA (.Ta) =

Y (r:_)
0.006

O.C Oq

0.010
0.015

0.020

0.C25

O. 0 30

0.035

0.040

0.060

0.080

O. 100

O. 150

0.200

O. 250

O. 300

O. 350

0._00

0.500

O. 600

0.700

0.800

0.900

I .000

1. 200
1.400

1.600

1.800

2.000

2.200

2.0,00

2. 600

2.800

3. 000

3.2O 0

3.400

3.600

3. 800

4.000

4. 200

4._00

4.6]0

4. 800

5.000

2g

ALo NG

C).227

CO:4CAV -- WALL

V(IN) = -21._70

UPW (F'I'/S EC) = 61.1_0

l] (FT/S b:C)
37.4q

39.48

40.7_

43.17
44. a]

_5. _a

_6.2P

U7.06

I17.59

_9.6q

51.17

52.22
54.3]

55.27
55. qO

56. 54

56. P5
57.38

57.'91

58._2

58.75

59.17

5g._O

60.11

61. 17

62.22

6.].17

63.80

6_.33

68.85

64.85

65.17

b5.59

66.U 3

67.17

68. ,,a

70.12

71.70

73. 3_{

74. ',5

75.70

76.75

77. 38

78. _I

254



STATION

DELS _IN) 0.12q

Y(I
0.0

0.0
0.010

0.015

0.V20
0.025

0.030

O. O35
0.040

0.060

0.080

0. 100
0.150

0. 200

O. 250

O. 300

O. 350
0.400

0.500

O. 6O0

0.700

0.800

0. g00

1.000

I. 1:]0

I. 200

1. 300
1.400

1.500

1.600

I. 70(I

1.800

I. 900

2.000

2. 200

2. 400

2.600

2. ;_00

3.000

TAuLE 30

CONSTANT PhE_SURE FLOW AI.t)NG

X (IN) = 9h.(_,

TiIETA (IN) : 0.113

N)
C 6

O_

CONCAVh: WALL

I_(IN) ---

UPW(FT/!;EC)

u (_T/S_:C)
31.26
35.17

37.9q

41 . ,_5

43.91

45.2a

t_6. 38

r;7.09

t;7.81

50.28
51.93

52.96

54.7U

55.8]

56.35

56.86

57. 17

57.4

57.99

58.U0

58.82

59.2]

59.74

60. ] 6

60.98

61 ._0

,2.62
63.3a

_4.16

6LI.7H

b5.50

66.22

66.7 3

_7.25

68.28

69.10

69. q 2

70.54

71. 16

255



STATION 1

Y (IN)

3.00

I .00

0.90

0.80

0.70

0.60

0.55

0.50

0.45

O.40

O.35

0.30

O. 25

0.20

0.15

0.10

0.05

0.05

0.04

0.03

0.02

TABLE

CONSTANT PRESS!I_E FLOW

X (IN) = 2_.00

31

ALONG CONCAVE WALL

(IN) : 0. (,_

U**2 V**2 W*#2 IIV UW V_

-0.008

-0.024

-_ .039

-0.093

-0.716

-1.461

-2.343

-3.306

-4.159

-4.929

-5.743

-6.694

-7.410

-8.073

-8.246

-8. 341

0.300

0.001

0.001

0.002

0.014

0.024

0.049

0.105

O. 123

0.128

0.116

0.021

0. 166
O. 170

0.101
0.068

0.049

0.049
0.103

0.115
0.003

0.129 0.657 0.007

0.13_ 0.057 0.007

0. I,3 0.063 0.008

0.160 0.119 0.034

0.286 0.455 0.306

1.840 1.188 1.274

3.406 2.445 2.058

6. 139 3. 348 3.28t
8.670 _. 462 5.340

11.278 5.318 7.102

14.142 6.259 8.898

16.071 7.110 9.920

17.841 8.274 10.290

19.697 8.919 11.368

22.263 9.773 11 .623

24. 178 9. 132 12.920

25.615 9.339 12.000

25.615 12.g00

26.440 13.135

29.048 13.892

30.763 14.816

-0.001
-0. (i (: 1
-0.002

-0.0C4

-0.022
-0.04(,

-O.On_

-0.175

-0.205

-0.383

-0.432

-0. 395

-0.276

-0.469

-0.432

-0.5_2

-0. 582

256



T_BLE 32

CONSTANTPRESSUREFLOW

STATION 2 X(IN) = 70,00

Y(IN) U**2 V**2 W**2

2.5_
2.30
2.10

1.90

I,S0

1.70

1.60

1.50

1.40

1.30

1.20

1.10
1.00

0.90

0.80

0.70

O.60

0.50

0.40

0.30

0.20

0.15

0.10

0. O5

0.05

0.04

0.03

0.265 q.274 0.171
O. 42R O. 633 O. 42!_

1.623 1.256 1. 1_q9
2.729 2.855 3.10 c)

4.507 4. 117 4.300
0.465 7.393 9.803

2. 165 4. 966 7. 945

5.225 10.54.{ 11 .865

9. 15R 8.721 13.893

3. 977 11.927 16.053

6.683 16.379 18.762

8.707 19.113 20.2t_7

1.184 17.434 23.252

1.951 21.482 24.280

2.199 20.588 25.043

1,592 20.573 25.258

1.202 19.287 23.820

0.065 19.652 23.688

8.769 16.533 21.046

7.672 16. 946 20.323

6.840 14.2R7 17.352

6.070 14.054 17.045

6.757 11.789 16.431

8.105 8.112 16.755

8. 105 16.755

8.609 17.198

8.967 17.434

ALONG CONCAV P WALl,

_(IN) = -17.830

UV UW VW

-0. 007

-0.123

-n.2_7

-0.979

-1.818

-4.241

-3.117

-6.996

-6.440

-8.810
-11. 497

-12.791

-11.414
-14.246

-13.577

-12.980

-12.558

-13.062

-11.204
-10.866

-9, 170

-8.561

-7. 190

-5.260

O. 012
0.06a

c. 279
O. £,81

1. 607
3. 805

4.036
5.688

6.845

8.312

9.615

10,330

11. 335

11.762

11.361

10,069

8. 897

7.678

5. 587

3.71/4

2.803

2.587

2.600

2,497

2.497

2. 389

1.728

-0.115

-0.1 33
-0.1 52

-0.523

-1. 3uO
-2.863

- 1. 882
-2.427

-2.74_

-3. 835

-4.943

-5.818

-5.229

-6.212

-6.OUt

-4.070

-3. 188
-_.034

-3.269

-I .Ia8

-I. 605

-2.100

-2.952

-2.923
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STA?ION

Y(IN)

1.60
I.SU
1.40
1.3O
1.20
I.I0
1.00
0.90
U.80
0.70
O.6O
3.50
0.40
O.3O
0.20
0.15
0.10

0.05

0.05

0.04

0.03

CONSTANT

TABLE

['RESSUE E FLOW

×(r_) = 7o.oo

('Or:cAr F WALL

_(rN) = -17. H30

U**2 V**2 W**2 UV I]ii VW

O. 35_ O. 23_}

0. 649 0.4 52

0. q77 O. 934

2.6;46 I .704

5.39] 2.930

7. 308 6. 091

8. 896 I 0. 578

11.293 12.566

15.7L16 16.376

15.233 18.886

15.230 19.516

18. 552 20.790

17.947 19.940

17. 314 20.202

15.047 18.767

]3.944 19.534

12.3Q2 19.0"/I

12.032 22.593

22.593

19. 969

20.146

0.305

0.466

0.929

2.799

5.862

I 1. 722

16.769

23.398

27.340

29.905

30.40"5

29.866

28.639

25.624

25.337

24.552

25. 957

27. 037

27.037

28.165

28.711

C.001

0.006

-0.009
-0. 092

-0. 376
-0.406

-1. 216

-1. 182
-1. 621
-1. 54R

-2. @94

-2 106
-2, 637

-2, 177

-3, 352
-3, 425
-3 604

-3, 626

-3, 62 0

-3 757

-3 400

-0.e41

-0.159

-0. 369
-1.579

-3.7_0
-6.212

-7. 946
-10...32

-13.797
-13.877

-I 3. 477

-14.716

- 13. 869

-11.H28
-g.610

-8.951

-7.B39

-7.017

O. 05C

0.031

0.915
O.laO

0. 585
0.40_

O. _.L5q

0.4 23

O. 9f ,o

0.129

1.651

u. 205

1.069

0. 085

1 .67q

O. 5'97

-0.286

-0.250
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o,A£10N 4

TABLE

CONSTANT ['F,L:Z:;d[ i: }.LOW

X (I,_:) = _6.nq

3N

AL()NG CONCAV}- Whi.l,

r(rn) : -21._7r!

Y (It,') [I*'.:2 .V*_2 _e,2 UV t11,! VW

2.53) 3.4<2 3.550

3.70D 5.255 R.659

q.550 7.656 6.050

8.600 11.419 R.25U

13. 130 15. 324 10.530

10.650 1b._56 12.100
18.3S_Y 17. 139 13.250

19.070 15.454 14.630

19.100 17. 336 16.250

18.300 19.719 18.370

16.870 20.656 20.709

16.000 21.573 22.650

15.214 20.458 21 .952

14.493 21.283 21.620

14.847 21.885 22.32_

15.611 17.ClH 22.60<]

16.076 19.98_, 22.880

16.162 19.973 2_.3(il
15.65_{ 19. 91_, 23.t,69
15.°40 18.90,6 2u,. 48b

16.51_6 16. £7_ 24.583

19.12_ 13.810 21 .845

2_.427 q. 155 20.899

29.209 7.386 19.581

30.I181 7.798 19.05"_

30.481 lq. 059

29.747 19.q0{

29.977 13.251

_.65

'1.45
4.25

4.05
3. (]5

3.65

]. _15
3.25

_.Oq
2.85

2.65

2.45

2.20

2.00

1.80

1.60

1.40

1.20

1.00

n._o

0.60

O. 40

0.20

0.10

0.05

0.05

0.04

0.03

. 300

f . 06_

1. 270

2. 190

2. R70

3. 070

2. _5o

2. ]00

1.070

(_.200

O. 400
I. 090

2. 32n

2.b75

3.219

"{. 367

3. 557

3.317

3. O8(;

3. 404

o.169

q. 932

5.80_

L,.c_7]

4. 280

a. 280

a. 322

-I ._65

-1.939

-3. IU9

-5.3q0

-8. 387

-9.587

-_].655

-7. _36

-7._44

-7.690

-6.504

-6. 049

-5.461

-7. ]62

-').611

-£.509

-10. 158

- 1U. q 9 3

-11.027

-10.777

-9.765

-8.8_5

-7.552

-6._96

-7. 130

-1.713
-2. 3 l,t :_

-3. { ,_q
-4. 398

-6.013
-5. <tH<

-5. 126

-3._:u

-2.7a2

-0. ]73

-I .247

-0. 633
-1. ':_3q

-2.097

-3.442

-4.<15

-5. 135

-a.9o2

-4.L39

--4. 202
--el. 77U

-3.972

-3.712

-2. Rr3
-4. 1{;0
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S"_'A ]' I (; _ q

TABLE

CONSTANT PRESSURE FLOW

×(IN} = 9(,.00

35

A L 0 NG COKCAV_'_ WALL

r (IN) : -21.u'IC,

f (T:J) U**2 V*_2 W**2 UV Ilk' V_

2. I13 3.525 _.795

2.405 3.52_ 5.117

2.56I 4.091 5.985

3.176 4.59_ 6.09'4

4.275 6. 593 6.84{,

5.696 7.581 7.7L_I

8.852 9. 756 8.85{_

11.180 12.720 IO.9_R

13.699 I_.68_ 12.510

15.007 15.249 14.629

15.777 16.130 15.549

15.939 17.774 16.125

15.871 15. 94P 16.896
16.536 12.503 17.8_6

18._17 1Q.e46 19.109

21.998 IJ.590 20.270

24.501 9.q45 22.179

26.907 12.731 21.805

28.437 5.068 23.72q

28.437 23.729

28.769 23.128

28.963 23. 100

3. O0

2.80

2.60

2.40

2.20

2.00

1.80

1.60

1.4_

1.20

1.00

O. 8O

0.60
0.40

O..:{0
0.20

O. 15

0.10

o.n5

0.05

0.0_

0.03

"_. D, 18
O. 350

O. 195
0.215

t, 135
-0. 0714

-¢. 5b k

-0.623

-0. 467

-0. 275

(). 033

O. 093

-C. ]5_
-0. 938

-1.955

-I. 989

-2. 881

-2. 31 3

-1. 845

-I. 8_5

-1. (i5_

-I. 679

-1.195

- I. 144

-I ._37

-1.62q

-2.927

-3.70q

-5. 572

-7. 960

-9._42

-9. 904

-10.268

-10.619

-R. 924

-7. 1LI5
-9.366

-8. 578

-7. Oq 5

-9.511

-5.63_

-0. 2_7

O. I r_O
O. ')12

0.63}_

0. 779

0.9 I_I

1.269

1.241

0.7a2

0._62

-0.1 5q
-0.31R

-0.091

-0.2a3

1.1ai

0.362

0.826

-0. 965

-1. 584

26O
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